Sandhill View

Science Curriculum Policy

Aspire, Achieve, Enjoy

Academy Aim

Here at Sandhill View Academy, we aim to securely equip <u>all</u> of our students for life beyond school as successful, confident, responsible and respectful citizens. We believe that education provides the key to **social mobility** and our curriculum is designed to build strong foundations in the knowledge, understanding and skills which lead to **academic and personal success**. We want our students to **enjoy** the challenges that learning offers. Ultimately, we want students to '*Know More, Do More and Go Further*'

Our aims are underpinned by a culture of **high aspirations**. Through developing positive relationships, we work towards every individual having a strong belief in their own abilities so that they work hard, build resilience and **achieve** their very best.

Intent

We aim to provide a high-quality science education that provides the foundations for understanding the world through the disciplines of biology, chemistry and physics. Science is vital to the world's future prosperity, and our curriculum allows students to develop and apply their substantive knowledge, disciplinary knowledge and discover and participate within STEM careers. Through building up a body of core knowledge and concepts, pupils are encouraged to recognise the power of rational explanation and develop a sense of excitement and curiosity about natural phenomena. They will be encouraged to understand how science can be used to explain what is occurring, predict how things will behave, and analyse causes.

The curriculum aims to ensure that knowledge is taught to be remembered, not encountered. The curriculum embraces learning from cognitive science about memory, forgetting and the power of retrieval practice. Knowledge for each scheme is planned to be interleaved with prior and future learning to support students' understanding of the most complex concepts.

The curriculum aims for pupils to:

- Develop scientific substantive knowledge;
- Develop understanding of the nature, processes and methods of science through different types of scientific enquiry that help them answer scientific questions about the world around them;
- Develop and apply disciplinary knowledge such as: observational, practical, modelling, enquiry, problem solving and mathematical skills, both in the laboratory, in the field and other environments;
- Develop their ability to evaluate claims based on science through critical analysis of the methodology, evidence and conclusions, both qualitatively and quantitatively.

Each topic within the programme of study has a career attached which is covered, in detail, on a local, national, and global level. In addition to subject specific links, we aim to explicitly reinforce the skills and aptitudes which employers say are important in the workplace;

- Resilience (Aiming High, Staying Positive);
- Collaboration (Teamwork, Leadership, Listening, Speaking);
- Creativity (Problem Solving).

The British values of democracy, the rule of law, individual liberty, and mutual respect of those with different faiths and beliefs are taught explicitly and reinforced in the way in which the school operates.

Sequence and structure

COVID Recovery 'Unlocking Learning'

As the impact of COVID is now impacting on students who missed learning during KS2 all students complete a baseline assessment upon entering the Science curriculum in September. This allows for an understanding of the gaps in pupil knowledge and how to further support their progress in future planning. Many students missed the opportunity to complete practical activities that further develop their disciplinary knowledge and therefore an emphasis on students accessing practical experimental work is made. Students complete skills-based units throughout Year 7 and Year 8 to support student transition to Secondary education.

Literacy

We know that students who read well achieve well. As such all subject areas are committed to providing regular opportunities to read extensively. In Science we provide opportunities for students to read Tier 2 and Tier 3 vocabulary with an emphasis on comprehension and application. We also support our students to use ambitious vocabulary including using Frayer models and 'push' techniques to widen the vocabulary students can confidently include in the work they produce. Coherent and fluent writing skills are also imperative for student achievement, so we support student writing skills by offering opportunities for extended writing, with modelling, and sentence stems to support.

The Key Stage 3 Science Curriculum:

KNOW MORE: Our Key Stage 3 Science Curriculum includes the following areas of study:

Three year KS3 where students complete the KS3 National Curriculum as well as bridging topics known as 'Fundamentals' to support students accessing KS4. There are 8 hours per fortnight for Year 7, Year 8, and Year 9.

1					
<u>practical</u>	of matter and	the ideas of	between	Substantive	
<u>activities</u>	what are the	acceleration.	atoms,	Knowledge:	Dissiplies
including lighting	processes		elements,	How do	<u>Disciplinary</u>
<u>a bunsen</u>	involved in	Substantive	and	animals	knowledge:
burner, heating	changing	Knowledge:	compounds	reproduce?	Students
water, making a	between	How can	and how are		<u>investigate</u>
flare as well as	them?	speed be	these		different
labelling key		measured,	represented	Disciplinary	indicators and
scientific		calculated,	?	Disciplinary	<u>test</u>
apparatus and	Distriction	and		knowledge:	chemicals to
introductions to	<u>Disciplinary</u>	represented		Students look	discover if
hazard symbols	knowledge:	graphically?	5.	at models of	they are
and their	Practical		Disciplinary	concepts such	acidic or
meanings.	<u>activities</u>		knowledge:	as gestation,	alkaline.
meanings.	include melting	Disciplinary	Students can	conception and	Students will
	and freezing	<u>Disciplinary</u>	<u>complete</u>	discuss ethical	complete
	<u>substances</u>	knowledge:	<u>practical</u>	issues with	neutralisation
Cross-curricular	and measuring	There is a	<u>activities</u>	<u>contraception</u>	reactions and
knowledge:	<u>the</u>	practical	focussing on	and infertility	discover what
Links to maths –	temperature of	investigation	conservation		happens
reading from a	this.	included in	of mass and		when acids
scale.	<u>Demonstration</u>	this topic that	how this links	Cross-curricular	and alkalis
	s of gas	focuses on	to word	knowledge:	are
Topic title and	pressure are	calculating	equations	Links to child	combined.
key concept:	also used to	speed by			combined.
Colla the study	integrate	measuring		development and the	
Cells – the study	learning with	the distance	Cross		
of animal and	practical	travelled and	Cross-	gestation	Cross-
plant cells and	observations.	time of a	curricular	period of the	curricular
their organelles		moving	knowledge:	foetus	knowledge:
including		object.	Links to	Topic title and	
specialised cells		Students also	maths for	key concept:	Links to food
in animals and	Cross-	work on	balancing	Key concept.	technology as
plants. Students	curricular	<u>graphs</u>	equations	Variation – this	students test
also focus on	knowledge:	representing	cquations	topic focusses	some foods
key concepts	Graph skills	journeys as	Topic title	on the variation	using
such as	link with maths	both	and key	within species	different
diffusion to link	Tania title and	distance-time	concept:	and how this	indicators
with substances	Topic title and	and velocity-	- 1	variation can be	Tonic title and
entering and	key concept:	time graphs.	Periodic	beneficial for	Topic title and
exiting cells.	Separating	There are	Table – A	evolution	key concept:
Onder to 12	mixtures – the	also	study of the	2.2.3.3011	Earth's
Substantive	study of	opportunities	properties of	Substantive	Structure – a
Knowledge:	compounds	to use	elements in	Knowledge:	topic
What is the	and mixtures	equations	different	How does	focussed on
structure and	and mixtures	and calculate	groups based	variation	how rocks are
function of	techniques	speed, and	on their	occur in	formed
organelles in	used to	acceleration	positions in	humans?	
different cells?			the periodic		including the
	separate them.	from formula.	table.		composition
	Substantive			D: : ::	of the Earth
Disciplinary	Knowledge:		Substantive	<u>Disciplinary</u>	and specific
knowledge:	. the Hicage.	Cross-	Knowledge:	knowledge:	formations
Practical		curricular		Students	
<u>Fractical</u>					1

activities in this
topic include
preparing slides
of animal and
plant cells and
viewing these
<u>under a</u>
microscope.
Students can
also complete
calculations of
magnification for
microscopic
samples.

Cross-curricular knowledge: Links to adaptations of cells including single celled organisms to Geography

Topic title and key concept:

Movement – the study of how the human body facilitates movement including joints, muscles, and bones.

Substantive
Knowledge:
How do
muscles,
bones, and
joints create
movement in
the human
body?

Disciplinary
knowledge:
Practical
activities include
a muscle

How can mixtures be separated based on their component substances?

<u>Disciplinary</u> knowledge:

There are

several

practical

activities in this topic including filtering insoluble solids and solvents, crystallisation of soluble solids and solvents, distillation of mixtures of liquids, and chromatograph y used to separate colours. Students also focus on scientific method including planning practical methods and graph skills.

Crosscurricular knowledge:

Links to graph skills covered in the maths curriculum

knowledge: Links to the maths curriculum through the speed = distance/time equation as well as calculating acceleration using the rearrangeme nt of formula and substitution.

Topic title and key concept:

Interdepende nce – students study the relationships between predators and prey and how they connect through food chains and food webs. There is also a focus of how humans affect these including using chemicals such as pesticides and

Substantive Knowledge: How are animals and plants connected?

fertilisers.

How is the periodic table organised?

Disciplinary knowledge:

Students complete a practical investigation of the properties of group 1

Students
complete an
investigation
into
displacement

reactions.

metals.

Crosscurricular knowledge:

Links to engineering and the properties of materials

Topic title and key concept:

Energy costs and transfers – how electricity is generated and the cost of this to people

Substantive Knowledge: What does it cost to investigate
environmental
and inherited
characteristics
and how this
variation is
representative
of the human
population

Cross-curricular knowledge:
Links to the mathematics curriculum through the study of data; continuous and discontinuous and how it can be displayed

such as ceramics.

Substantive Knowledge: How are rocks formed?

Disciplinary knowledge:
Practical investigations in this unit include reactions of metals and rocks to observe their composition.

Cross-curricular knowledge: Links to geography and outdoor learning but studying how rocks are formed and how this rock cycle leads to changes in rock formation.

Topic title and key concept:

Universe – this topic consists of objects in the night sky and the night sky as well as how they influence our understandin g of

<u>strength</u>
<u>practical</u>
focussing on
<u>antagonistic</u>
muscles.
Cross-curricu
knowledge:
Links to PE a
muscle stren
including how

Cross-curricular knowledge:
Links to PE and muscle strength including how muscles can be built through exercise.

Topic title and key concept:

Gravity – the study of gravity, mass, and weight and the physical laws that connect them.

Substantive Knowledge:

How are mass, weight, and gravity connected?

Disciplinary knowledge:

Practical activities <u>include</u> measuring forces using newton meters for different masses to determine the value of gravitational field strength on Earth. Students are also able to draw conclusions from demonstration s of objects falling in a vacuum.

Crosscurricular knowledge: Links to using and Disciplinary
knowledge:
Students
develop their
understandin
g of scientific
diagrams and
how they can

be explained

Crosscurricular knowledge: Links to the geography and outdoor learning curriculum through the use of fertilisers and pesticides and how they lead to bioaccumulat ion

Topic title and key concept:

Plant
reproduction
- the main
reproductive
organs in
plants and
how they
lead to
pollination
and
germination.

Substantive Knowledge: How do plants reproduce?

generate electricity?

Disciplinary
knowledge:
The
development
of
mathematical
skills by
calculating
energy in
various
scenarios

Crosscurricular knowledge: Links to engineering and how electricity is generated in power stations phenomena on earth such as the seasons and the phases of the moon

Substantive Knowledge: What is the composition of space?

Disciplinary

knowledge: A
practical
investigation
into the
impact of
meteors on
the surface of
the Earth and
how scientists
can
determine
information
about these
meteors from
their craters.

Crosscurricular knowledge: Links to the mathematics curriculum including calculations of orbits

		rearranging equations with the maths curriculum as well as a focus on graph skills.	Disciplinary knowledge: Students complete a practical activity related to the shape of seeds and their dispersal methods including graphical skills, writing methods, apparatus, and writing conclusions and			
Year 8	Topic title and key concept: Light waves – light is a wave that transfers	Topic title and key concept: Digestion: the main nutrients found in food	and outdoor learning for how plants spread their seeds and are fertilised by pollinators Topic title and key concept: Photosynthes is – the study	Topic title and key concept: Contact forces – the	Topic title and key concept: Inheritance – students develop their	Topic title and key concept: Climate – the study of the Earth's

energy from a	and how are	of the	study of	understanding	atmosphere,
luminous object.	they broken	process of	forces and	of genetics	changes to
Light travels in	down in the	photosynthes	how forces	including the	this including
straight lines	body.	is and some	can cause	history of DNA	climate
and can reflect	-	factors that	movement	and how	change and
and refract	Substantive	can affect the	when they	characteristics	how the
based on the	Knowledge:	rate	are not in	are inherited	carbon cycle
density and	What is a		eguilibrium		is affected by
surface of an	balanced diet	Substantive		Substantive	living
object.	and how does	Knowledge:	Substantive	Knowledge:	organisms
,	our body	How do	Knowledge	What is the	g
Substantive	digest food?	plants	How do	structure of	Substantive
Knowledge:		produce	different	DNA?	Knowledge:
What is light		glucose?	forces affect		What is the
and how does	Disciplinary		objects?		carbon cycle
it travel?	knowledge:			Disciplinary	and how do
	The main	Disciplinary		knowledge:	humans
<u>Disciplinary</u>	practical	knowledge:	Disciplinary	Students	affect it?
knowledge:					
<u>Practical</u>	activity is	Students	knowledge:	develop their	
activities include	testing foods	investigate	Students	understanding	Dissiplinant
investigating	for different	some factors	complete	of data by	<u>Disciplinary</u>
angles of	nutrients	that affect the	practical	focussing on	knowledge:
reflection as well	including how	rate of	activities	continuous and	<u>Students</u>
as angles of	to recognise	photosynthes	focussing on	discontinuous	develop their
refraction.	positive tests.	<u>is</u>	elastic	data and how	understandin
Students also			objects, as	this is displayed	g of data by
focus on			well as drag		focussing on
improving their	Cross-	Cross-	forces for		analysing
<u>mathematical</u>	curricular	curricular	solids, and	Cross-curricular	<u>graphs</u>
skills by using a	knowledge:	knowledge:	<u>liquids.</u>	knowledge:	showing
protractor to	Links to			Links to the	<u>carbon</u>
measure angles.	catering and a	Links to		maths	dioxide levels
	balanced diet.	geography	Cross-	curriculum and	in the
		and	curricular	displaying data	<u>atmosphere</u>
Cross-curricular	Topic title and	adaptations	knowledge:		over time
knowledge:	key concept:	of plants for	Links to	Topic title and	
Links to	Breathing:	different	engineering	key concept:	
mathematics	What the	climates	based on	Evolution – the	Cross-
and measuring	composition of	Topic title	moments and	study of how	curricular
angles using a	the air is and	and key	the effect of	DNA	knowledge:
protractor		concept:	turning	inheritance can	Links to
productor	how gases travel through	Types of	forces.		Geography
Topic title and	_	reaction – in		cause changes	and how the
key concept:	the body to the alveoli to be		Topic title	in species over time	changing
	diffused into	this topic	and key	unic	climate
Sound waves:		students	concept:	Substantive	affects
sound is a	the blood.	develop their	Pressure –	Knowledge:	populations
longitudinal	Substantive	understandin	this topic	What is the	
wave that	Knowledge:	g of chemical	studies	process of	Topic title and
requires a	What is the	reactions	pressure in	evolution?	key concept:
medium to travel	21114015 1116	including	solids,	3.0.000	F41.
through.		chemical and	liquids, and		Earth's
		physical			resources -

physical

resources -

Students focus on the pitch and loudness of sounds and how oscilloscope traces represent sound waves as well as uses of sound waves by humans and animals.

Substantive Knowledge:

How can the pitch and loudness of sound waves be changed?

Disciplinary
knowledge:
Teacher led
demonstrations
of sound in a
vacuum.

Cross-curricular knowledge: Links to pitch and loudness of sound waves to Music

Topic title and key concept:

Electricity – this topic includes circuit symbols and their uses as well as the concepts of potential difference, current and how static electricity is caused.

Substantive Knowledge: How are

process of breathing?

Disciplinary
knowledge:
Students
completed
skills work on
measuring
their lung
volume and
comparing this
to other body
qualities such
as height.

Crosscurricular knowledge: Links to PE and the effect of exercise on the body.

Topic title and key concept:

Respiration: the study of the process of respiration including the different types and how it is used to make products such as alcoholic drinks and bread.

Substantive Knowledge: What are the different types of respiration and how are they used? changes as well as thermal decompositio n and combustion as examples of chemical reactions

Substantive Knowledge: What are different types of chemical reactions?

Disciplinary

knowledge: **Students** complete practical activities including combustion, and thermal decompositio n. There is a development of student understandin g of conservation of mass through investigations into mass

Crosscurricular knowledge: Links to geography relating changes of state to physical changes

changes.

gases including some factors that affect this.

Substantive Knowledge: What are factors that affect pressure in different changes of state?

Disciplinary
knowledge:
Students
watch
demonstratio
ns of
pressure in
solids,
liquids, and
gases
including how
factors can
affect
pressure.

Crosscurricular knowledge: Links to engineering as the use of hydraulics Disciplinary
knowledge:
Students
analyse data to
identify
changes in
species over
time

Cross-curricular knowledge: Links to mathematics including displaying and analysing data discover how metals are extracted from the Earth and how humans try to conserve these materials through recycling

students

Substantive Knowledge: How are metals obtained?

Disciplinary
knowledge:
Students
focus on
extracting
methods
used by
scientists and
how these
have
changed over
time

Crosscurricular knowledge: Links to engineering and how metals are extracted from the Earth

Topic title and key concept:

ainevite mede	Disciplinant	wath an than		
circuits made	Disciplinary	rather than		Electromagne
and what	knowledge:	chemical		ts – the study
materials can	<u>Practical</u>	changes.		of permanent
be used?	activity on the	Topic title		and
	effect of	•		temporary
	exercise on	and key		magnets and
Disciplinary	breathing rate	concept:		how different
knowledge:	and heart rate	Chemical		materials are
Students make		Energy – this		affected in
a variety of		topic		their
circuits using	Cross-	focusses on		magnetic
different	curricular	energy		fields
components and	knowledge:	changes		Substantive
test materials to	Links to PE	during		
see whether	and how	chemical		Knowledge:
they can be	respiration in	reactions and		What are
used in	exercise	how this can		permanent
electrical	affects the	be measured		and
circuits.	body			temporary
	,	Substantive		magnetic fields?
		Knowledge:		neius :
Cross-curricular		What are		
knowledge:		endothermic		
Links to		and		<u>Disciplinary</u>
engineering and		exothermic		knowledge:
electrical circuits		reactions?		Students test
Cicotrioar orround		reactions:		different
				materials to
				discover
		Disciplinary		magnetic and
		knowledge:		non-magnetic
		<u>Students</u>		materials.
		complete a		Students also
		skills		complete a
		investigation		<u>skills</u>
		focussed on		investigation
				into factors
		temperature changes in		that affect the
		_		strength of
		chemical reactions.		temporary
		·		magnetic
		Students also		<u>fields</u>
		focus on		
		graph skills		
		and representing		Cross-
		representing		curricular
		data in		knowledge:
		different		Links to
		forms.		engineering
				and the
				development
				of locking

of locking

Cross-	mechanisms
curricular	as well as
knowledge:	loudspeakers
Links to the	and
mathematics	microphones
curriculum	using the
through	motor effect
calculating	
means, and	
data analysis	
including	
graph skills	
graph skins	
Topic title	
and key	
concept:	
Metals and	
Non-Metals –	
the study of	
the reactions	
of metals and	
non-metals	
with other	
chemicals	
such as acids	
and oxygen.	
and oxygen.	
Substantive	
Knowledge:	
Knowledge:	
How do	
How do metals react	
How do metals react with	
How do metals react with different	
How do metals react with	
How do metals react with different	
How do metals react with different chemicals?	
How do metals react with different chemicals?	
How do metals react with different chemicals?	
How do metals react with different chemicals? Disciplinary knowledge:	
How do metals react with different chemicals? Disciplinary knowledge: Students	
How do metals react with different chemicals? Disciplinary knowledge: Students identify	
How do metals react with different chemicals? Disciplinary knowledge: Students identify properties of	
How do metals react with different chemicals? Disciplinary knowledge: Students identify properties of metals and	
How do metals react with different chemicals? Disciplinary knowledge: Students identify properties of metals and non-metals	
How do metals react with different chemicals? Disciplinary knowledge: Students identify properties of metals and non-metals by testing	
How do metals react with different chemicals? Disciplinary knowledge: Students identify properties of metals and non-metals by testing them. There	
How do metals react with different chemicals? Disciplinary knowledge: Students identify properties of metals and non-metals by testing	
How do metals react with different chemicals? Disciplinary knowledge: Students identify properties of metals and non-metals by testing them. There	
How do metals react with different chemicals? Disciplinary knowledge: Students identify properties of metals and non-metals by testing them. There is also an	
How do metals react with different chemicals? Disciplinary knowledge: Students identify properties of metals and non-metals by testing them. There is also an investigation into the	
How do metals react with different chemicals? Disciplinary knowledge: Students identify properties of metals and non-metals by testing them. There is also an investigation into the reactions of	
How do metals react with different chemicals? Disciplinary knowledge: Students identify properties of metals and non-metals by testing them. There is also an investigation into the reactions of metals and	
How do metals react with different chemicals? Disciplinary knowledge: Students identify properties of metals and non-metals by testing them. There is also an investigation into the reactions of	

_		T	T	T	T	,
			to the			
			<u>reactivity</u>			
			<u>series</u>			
			Cross-			
			curricular			
			knowledge:			
			Limbra 4a			
			Links to			
			mathematics			
			and data			
			analysis			
			including			
			calculating a			
			mean and			
			representing			
			data in			
			graphical			
			forms.			
Year	Topic title and	Topic title and	Topic title	Topic title	Topic title and	Topic title and
9	key concept:	key concept:	and key	and key	key concept:	key concept:
			concept:	concept:		
	Fundamentals:	Fundamentals:			Fundamentals:	Fundamental
	The Body –	Materials -	Fundamental	Fundamental	Reactions –	s: Atoms –
	Students	Students	s: Energy	s: Plants –	Students	students
	develop their	develop their	Transfers –	students	investigate how	discover how
	understanding	understanding	students	develop their	to identify	different
	of cells by	of elements,	work on	understandin	gases	materials can
	studying	compounds,	describing	g of plants by	produced in	change
	prokaryotes and	and mixtures	and	looking at	chemical	between
	eukaryotes and	including how	calculating	plant tissues	reactions such	states and
	viewing cells	mixtures are	energy	and organ	as the	link this to the
	under a	separated.	transfers and	systems. The	conservation of	density of the
	microscope.	Students also	link this to	topic includes	mass	substance.
	Students also	focus on the	electric	the equation	examples. This	Students also
	link the	layout of the	circuits.	for	topic also	focus on the
	movement of	periodic table	Students also	photosynthes	includes a	structure of
	substances in	and the mass	discover how	is and biotic	study of the	the atom and
	and out of cells	and formula of	forces are	and abiotic	process of	how our
					l *	model of the
	to the processes	compounds.	involved in	factors that	electrolysis and	
	the substances	Substantive	energy	affect plants.	separating ionic	atom has
	are involved in.	Knowledge:	transfers and	Substantive	compounds.	developed
	Students also	What are	how reaction	Knowledge:	Substantive	over time.
	look at the		time and	What are		Substantive
	movement of	elements,	stopping		Knowledge:	
	pathogens into	compounds,	distance are	factors that	What are the	Knowledge:
	the body and	and mixtures	affected by	affect plant	tests for	How is the
	the recognisable	and how are	different	tissues and	different	density of
	symptoms they	elements	factors	organs?	gases?	objects
		displayed on				affected by
-	•					

the periodic **Substantive** How does changes of produce in the body. table? Knowledge: electrolysis state? Disciplinary What are separate ionic **Substantive** Disciplinary knowledge:Pr What is the energy compounds? Knowledge: knowledge: actical structure of transfers Practical What activities for the atom and and how are substances activities in this this topic can how has our thev Disciplinary move into and topic include include modelling of described in knowledge: out of separation viewing this changed different Students can organisms and techniques <u>stomata</u> over time? scenarios? benefit from how are they including under a demonstrations used? distillation and microscope of chemical chromatograph and Disciplinary **Disciplinary** Disciplinary reactions that <u>observing</u> y as well as knowledge: knowledge: knowledge: produce gases practical photosynthes Students Students use and what Practical applications of is related to focus on the microscopes to activities positive tests factors that conservation development view a variety of include an for each gas may affect it of mass of atomic are. Students cells and investigation models and Crosspractice into the can also how these preparing slides curricular relationship complete Crossmodels have knowledge: investigations for viewing. between changed curricular **Practical** Links to the weight and into knowledge: based on mathematics electrolysis. investigations mass Links to evidence also include curriculum Students can gathered Cross-Geography changes in during complete curricular related to <u>through</u> calculations of mass related to practical knowledge: biotic and scientific investigations osmosis. relative abiotic investigation Links to the formula mass into Cross-curricular factors for mathematics endothermic Crossknowledge: curriculum plant growth. and exothermic curricular Links to the through the reactions and knowledge: mathematics substitution how these Links to curriculum and reactions are engineering related to rearrangeme measured related to the changes in nt of using density of equations for mass and data temperature different analysis of calculating changes materials and trends in energy their uses diseases over transfers Cross-curricular time. knowledge: Links to engineering and the extraction of metals using electrolysis

The KS4 Curriculum is taught over 2 years. Y10 and Y11 have 12 hours of Science per fortnight. 11/Sc1 complete AQA GCSE Separate Science (8461, 8462, 8463) whilst all other classes complete AQA GCSE Combined Science (8464).

KS3	Half Term 1	Half Term 2	Half Term 3	Half Term 4	Half Term 5	Half Term 6
Year	Topic title and	Topic title and	Topic title	Topic title	Topic title and	Topic title and
10	key concept:	key concept:	and key	and key	key concept:	key concept:
	0 " " "	_ ,	concept:	concept:		
	Cells – this topic	Energy and			Metals and	Inheritance
	focuses on cell	electricity	Infection and	Plants and	acids – this	and Variation
	specialisation	Substantive	body	nutrients –	topic focusses	– this topic
	and	Knowledge:	response –	This topic	on extracting	focuses on
	differentiation	How is the	this topic	focusses on	metals from	DNA and how
	including	efficiency of	focusses on	the process	ores using	this is passed
	chromosomes	devices	pathogens	of	displacement	on through
	and mitosis.	calculated?	and how they	photosynthes	reactions and	sexual and
	Substantive	outoutatou.	enter the	is including	the process of	asexual
	Knowledge:	How is	body and	limiting	electrolysis. It	reproduction.
	What are	electricity	then the body	factors and	also covers	Students also
	specialised	generated	response to	how plants	acids and	discover how
	cells? How do	and then	the presence	store and use	alkalis and their	characteristic
	cells become	transferred to	of pathogens.	glucose. It	neutralisation	s are
	specialised?	homes?	Students also	also links this	reactions and	inherited and
			study artificial	to respiration	temperature	that variation
	<u>Disciplinary</u>	How do	methods of	and the role	changes in	in species
	knowledge:	electrically	provoking	of glucose in	specific	can lead to
	Students can	charged	body	aerobic and	reactions.	evolution in a
	view specialised	particles	response	anaerobic	Substantive	species and
	cells under a	interact?	such as vaccines,	respiration.	Knowledge:	how species that are
	microscope.		and other	Substantive		unable to
	There is also a		medicines	Knowledge:	How are	evolve risk
	<u>required</u>	<u>Disciplinary</u>	such as		metals	becoming
	practical	knowledge:	antibiotics	How do	extracted from	extinct.
	focussing on	<u>Students</u>	and	plants make	ores? What	GAUITOL.
	osmosis and the	complete two	painkillers.	and store	are the	Substantive
	movement of	<u>required</u>	pairikiiicis.	glucose?	products of	Knowledge:
	water into and	practicals	Substantive	How is	electrolysis?	What is the
	out of cells	measuring	Knowledge:	glucose	What is	structure of
	based on	resistance in		used in	neutralisation	DNA and
	concentration	circuits and	What are	aerobic and	? What are	how is it
	<u>gradients.</u>	through	pathogens	anaerobic	exothermic	replicated?
	Cross-curricular	<u>different</u>	and how do	respiration?	and	What :-
	knowledge:	components.	they enter		endothermic	What is
	Links to	Students can	the body?		reactions?	evolution
	mathematics	also complete	How does	<u>Disciplinary</u>		and how can
	with the	practical work	the body	knowledge:		organisms evolve over
	calculation of	wiring a plug.	respond to	<u>Students</u>	<u>Disciplinary</u>	time?
	percentage	Cross-	the	<u>investigate</u>	knowledge:	unie :
	change in mass	curricular	presence of	reaction time	Practical	
	of plant tissues.	knowledge:	pathogens?	and factors	<u>Practical</u>	
		Links to the		that can	activities	
				affect this	include	

Topic title and key concept:

Periodic table and bonding

Substantive Knowledge: What are trends in properties of groups on the Periodic table?

How do elements bond together?

What are properties of compounds?

Disciplinary
knowledge:
Students can
observe
reactions of
alkali metals
with oxygen and
water.

Cross-curricular knowledge:
Links to mathematics curriculum with the balancing of equations.

mathematics curriculum by using equations and calculating different quantities.

Topic title and key concept:

The Body this topic focuses on body systems as their processes such as circulatory and respiratory systems and the digestive system. It links with noncommunicable diseases such as CHD and risk factors for these.

Substantive **Knowledge:** What is the structure and function of body systems? How does the body break down and absorb nutrients? What are risk factors for noncommunicabl e diseases

Disciplinary knowledge: Students investigate how nutrients are tested for <u>Disciplinary</u> knowledge:

Students can

complete

practical activities looking at the growth of bacteria from different surfaces to show pathogen transfer or the effectiveness of disinfectants at removing bacteria from surfaces.

Cross-curricular knowledge: Links to the History curriculum and pathogens as causes for disease throughout history.

Topic title and key concept:

Atoms and radiation – this topic focusses on changes of state and the internal energy of substances including

including the intake of caffeine and distractions.

Crosscurricular knowledge: Links to the PE curriculum measuring reaction time displacement reactions and a required practical based on the electrolysis of aqueous solutions. Students also complete a required practical focussing on temperature changes in chemical reactions as well as optional examples of endothermic and exothermic reactions.

knowledge: Students have the opportunity to <u>create</u> models of the double helix structure of DNA. Students use various models to show the process of evolution and how a change environment and variation do not always lead to an

organism

evolving.

Disciplinary

Cross-curricular knowledge:
Links to
Geography and mining and quarries as geographical features.

Topic title and key concept:

Forces – the study of contact and noncontact forces and how these forces can be measured and calculated in various scenarios. Students also study the motion of objects and calculate the velocities and

in specific foods as well as the effect of pH and temperature on the rate of enzyme activity. Students also study the heart and can complete dissections themselves or access teacher demonstration of these.

Cross-curricular knowledge: Links to food technology and how nutrients are digested and absorbed in the body. Links to PE and the effect of exercise on the rate of respiration.

Topic title and key concept:

Chemical measurements students focus on measurements and calculations of quantities during chemical reactions including balancing equations, relative formula mass.

heating and cooling curves. Students also focus on the arrangement and motion of particles in solids. liquids, and gases and the limitations of this model. Students then move on to look at a more in depth model of the atom and how it is affected by the release of nuclear radiation. the half life of this radiation. and how objects can become irradiated or

Substantive Knowledge:

contaminated

What are changes of state and how is internal energy measured and changed?

What is nuclear radiation and what are its properties?

accelerations of objects.

Substantive Knowledge:

What are forces and how can they be calculated?

How can the motion of objects be described and quantified based on the forces acting on it?

Disciplinary

knowledge: There are a variety of practical activities in this topic including the measurement of weight and mass to determine the value of gravitational field strength on Earth. <u>Students</u> investigate acceleration and how the force applied to an object can increase its acceleration proportionally.

Cross-curricular knowledge: Links to the mathematics curriculum as

concentration	on	students	
calculations	,	rearrange,	
and limiting	Disciplinant	substitute and	
reactants.	knowledge:	calculate	
, oddanio.	Students	quantities using	
Substantive		equations	
Knowledge		equations	
1	atom and		
What is	how		
conservation	on observational		
of mass?	evidence has		
How are	caused		
moles	scientists to		
balanced in	change these		
chemical	models.		
reactions?	Students also		
	use a		
	<u>modelled</u>		
	example to		
Disciplinary	<u>investigate</u>		
knowledge:	half-life of		
<u>Practical</u>	nuclear		
activities for	radiation		
this topic	samples.		
<u>include</u>			
demonstration	<u>on</u>		
<u>s of</u>			
conservation	n Cross-		
of mass	curricular		
including	knowledge:		
magnesium	Links to the		
oxide	mathematics		
production in	n curriculum		
crucibles.	including		
<u>crucibles.</u>	exponential		
	graphs and		
	how to		
Cross-	interpret		
curricular	these.		
knowledge:			
Links to			
Mathematics	s		
and the			
balancing of	f		
equations.			
Cquations.			

Year	Topic title and	Topic title and	Topic title	Topic title	Students will be	Students will
11	key concept:	key concept:	and key	and key	focussing on	have left after
	.,		concept:	concept:	preparing for	their Summer
	Rate and Extent	Inheritance	,	,	their Summer	Examinations
	of Change –	and Variation –	Chemical	Chemistry of	Examinations	
	students	this topic	analysis –	the		
	investigate rates	focuses on	students	Atmosphere		
	of reaction in	DNA and how	discover how	a study of		
	this topic	this is passed	chemical	the		
	including factors	on through	analysis	composition		
	that can	sexual and	techniques	of our		
	increase or	asexual	can be used	atmosphere		
	decrease this	reproduction.	to determine	and how this		
	rate. Students	Students also	the presence	has changed		
	also cover	discover how	of different	over the		
	dynamic	characteristics	gases as well	history of the		
	equilibrium and	are inherited	as soluble	Earth as well		
	Le Chatelier's	and that	substances found in	as the impact of humans on		
	principle and	variation in				
	how this is used	species can lead to	chromatogra ms. Students	this.		
	in industry to	evolution in a	also work on	Substantive		
	produce		chemical	Knowledge:		
	products such as ammonia.	species and how species	measuremen	How has the		
	as ammonia.	that are unable	ts such as	Earth's		
	Substantive	to evolve risk	spectroscopy	atmosphere		
	Knowledge:	becoming	and	changed		
	What are	extinct.	identifying	over time		
	factors that	CXIIIOL.	ions in	and how		
	affect rates of	Substantive	substances.	have		
	reaction?	Knowledge:	oubotarroot.	humans		
		What is the	Substantive	affected		
		structure of	Knowledge:	these		
	Disciplinary	DNA and how	How can	changes?		
	knowledge:	is it	scientists			
	in on ougo	replicated?	identify			
	<u>Practical</u>	What is	unknown	Disciplinary		
	activities in this	evolution and	substances	knowledge:		
	topic are varied	how can	using			
	and include an		chemical	Students can		
	evaluation of	organisms evolve over	analysis?	analyse data		
	how to collect	time?		<u>representatio</u>		
	gas released	time:		ns of		
	from a chemical		<u>Disciplinary</u>	changes to		
	reaction in the		knowledge:	<u>the</u>		
	most accurate	Disciplinary		atmosphere		
	manner.	knowledge:	<u>Students</u>	of the Earth		
	Students	Students have	create their			
	investigate how	the opportunity	<u>own</u>			
	concentration,	to create	<u>chromatogra</u>	Cross-		
	temperature, or	models of the	ms and use	curricular		
	surface area	double helix	these to	knowledge:		
	i e	ACADIO HOHA	<u>determine</u>	ı	I	İ

affect rates of	structure of	the	Links to the	
reaction.	DNA. Students	composition	mathematics	
<u>rodottorn.</u>	use various	of different	curriculum as	
	models to	substances.	students	
	show the	Students can	analyse	
Cross-curricular	process of	also	graphical	
knowledge:	evolution and	complete gas	representatio	
Links to Outdoor		tests to	ns of the	
Links to Outdoor	how a change		Earth's	
Learning and	in environment	determine results of		
the production	and variation		atmosphere	
of fertilisers	do not always	positive tests	Topic title	
using dynamic	lead to an	for different	and key	
equilibrium	<u>organism</u>	gases.	concept:	
	evolving.	Students		
		studying	Using	
		<u>Separate</u>	Resources –	
	Cross-	Science can	a study of	
Topic title and	curricular	evaluate	sustainability	
key concept:	knowledge:	different	and the	
Forces – the		substances	environmenta	
	Links to the	for the ions	I impact of	
study of contact	History	which they	products over	
and non-contact	curriculum	contain using	their life time	
forces and how	through the	flame tests	including	
these forces can	study of	<u>and</u>	minimising	
be measured	genetic	spectroscopy	damaging	
and calculated	inheritance	±	effects.	
in various	and how			
scenarios.	lineages used		Substantive	
Students also	genetic	Topic title	Knowledge:	
study the motion	inheritance to	and key	Mhat is the	
of objects and	determine	concept:	What is the	
calculate the	heirs		impact of	
velocities and	T : "" .	Waves – the	products	
accelerations of	Topic title and	study of	over their	
objects.	key concept:	energy	life cycle?	
Substantive	Organic	transfers in	How can the	
Knowledge:	Chemistry –	the form of	impact of	
ranowioago.	the study of	transverse	products be	
What are	organic	and	reduced	
forces and how	chemicals	Iongitudinal	over time?	
can they be	collected from	waves.		
calculated?	crude oil and	Students		
	separated in	discover	<u>Disciplinary</u>	
How can the	fractional	more about	knowledge:	
motion of	distillation.	the family of	<u>Students</u>	
objects be	Students	waves known	<u>investigate</u>	
described and	studying	as the	how potable	
quantified	separate	electromagne	water is	
based on the	science also	tic spectrum	made and	
forces acting	study various	and how	the	
on it?	reactions of	these are	processes	
l	104040113 01			1

Disciplinary knowledge: There are a variety of <u>practical</u> activities in this topic including <u>the</u> measurement of weight and mass to determine the value of gravitational field strength on Earth. Students investigate acceleration and how the force applied to an object can increase its acceleration proportionally.

Cross-curricular knowledge:
Links to the mathematics curriculum as students rearrange, substitute and calculate quantities using equations

these
hydrocarbons
and how we
use them to
make
substances
such as
carboxylic
acids, esters,
alcohols and
polymers.

Substantive Knowledge:

What is crude oil and what does it contain?

How can crude oil be separated?

Disciplinary
knowledge:
Students can
test
substances to
discover if they
are alkanes or
alkenes using
bromine water.

Crosscurricular knowledge: Links to engineering and the use of different substances in crude oil being used as fuels used in various employment sectors.

Substantive Knowledge:

What are different types of waves and what are they used for?

Disciplinary knowledge: **Transverse** and longitudinal waves are modelled by teaching staff demonstrate this unobservable phenomenon . Students participate in calculating the speed of a wave based on measuring

the

and

and a

wave.

standing

wavelength

frequency of

a water wave

Crosscurricular knowledge: Links to the IT curriculum involved in treating sewage water and ground water.

Crosscurricular knowledge: Links to Geography and the environmenta I impact of products

Topic title and key concept:

Electromagn etism – a study of magnetic fields and the link between electricity and magnetism

Substantive Knowledge: What are permanent and temporary magnets and the factors that affect the strength of their fields?

Disciplinary knowledge:
Students are given the opportunity to investigate permanent

and uses of and electromagne temporary tic waves in magnets transmitting including data which materials Topic title they affect and key and factors concept: that can increase the Ecology – the strength of study of living the magnetic organisms in fields. communities Students and how studying these <u>Separate</u> communities Science also interact and investigate affect each the motor other. effect and Students how this study generates scientific movement. techniques such as sampling and discuss how Crosssampling can curricular be used to knowledge: identify Links to the mathematics populations curriculum in an area. using **Substantive** equations Knowledge: including How do rearranging, populations substituting, interact with and each other calculating and what different factors quantities. affect communitie s? **Disciplinary** knowledge: **Practical** activities <u>include</u> sampling techniques

		<u>where</u>		
		<u>students</u>		
		<u>estimate</u>		
		<u>population</u>		
		numbers and		
		discuss		
		factors that		
		can affect		
		these		
		populations.		
		Students also		
		study a		
		variety of		
		graphical		
		<u>representatio</u>		
		ns of		
		changes to		
		<u>populations</u>		
		over time.		
		Cross-		
		curricular		
		knowledge:		
		Links to the		
		mathematics		
		curriculum as		
		students		
		analyse		
		graphs. Links		
		to the		
		Geography		
		curriculum		
		and the		
		factors that		
		affect living		
		communities.		
1				

DO MORE: Milestone assessment end points

Disciplinary knowledge in Science is often discussed as 'Working Scientifically' which has a range of skills related to practical work, modelling, analysis, and evaluation. The end points for this knowledge are split into different categories as shown below.

However, students must also be able to complete skills such as applying knowledge, evaluating data and hypotheses, explaining key concepts, and defining key terms. Below are end points for each of the year groups and topics based on these core skills.

Basic	Clear	Detailed

Safety and Risk

Recognise risks when prompted

Apparatus

Identify basic apparatus used in investigations

Method

Suggest ways to investigate a question

Variables

Name the three variables

Graphs

Label axes on a basic line or bar graph

Conclusion and Evaluation

Identify straightforward patterns in data

Scientific method

Give examples of how scientific methods and theories have changed over time

Recognise/draw/interpret diagrams

Safety and Risk

Act on suggestions to minimise risk

Apparatus

Choose correct equipment from a selected list with prompts

Method

Hypothesise a result based on an investigation

Variables

Name a control variable from a list of variables

Graphs

Clear

Label units on axes on basic line or bar graphs

Conclusion and Evaluation

Make simple conclusions

Scientific method

Identify methods that can be used to tackle problems caused by human impacts on the environment Translate data to a representation with a model

Safety and Risk

Independently recognise risks

Apparatus

Independently choose the correct equipment

Method

Suggest ways to investigate a question

Variables

Identify variables that are difficult to control

Graphs

Plot points on basic line or bar graphs

Conclusion and Evaluation

Suggest ways to improve a method Identify anomalies

Scientific method

Detailed

Describe specified examples of the technological applications of science Describe methods that can be used to tackle problems caused by human impacts on the environment

Year 8

Basic

Safety and Risk	Safety and Risk	Safety and Risk
Act on suggestions to minimise risk	Independently recognise risks	Describe risks during specific
<u>Apparatus</u>	<u>Apparatus</u>	practical work
Choose correct equipment from a	Independently choose the correct	Identify hazards associated with
selected list with prompts	equipment	risks
<u>Method</u>	Method	<u>Apparatus</u>
Hypothesise a result based on an	Suggest ways to investigate a	Draw the set up of apparatus in
investigation	question	specific investigations
<u>Variables</u>	<u>Variables</u>	Method
Name a control variable from a list	Identify control variables	Describe a basic method including
of variables	independently	measurements that must be taken
<u>Graphs</u>	<u>Graphs</u>	Describe a basic method including
Label units on axes on basic line or	Plot points on basic line or bar	ranges and intervals
bar graphs	graphs	<u>Variables</u>
Conclusion and Evaluation	Conclusion and Evaluation	Recognise which variables to
Make simple conclusions	Suggest ways to improve a method	control, measure, and change
Scientific method	Identify anomalies	<u>Graphs</u>
Identify methods that can be used	Scientific method	Draw a line graph with support
to tackle problems caused by	Describe specified examples of the	Conclusion and Evaluation
human impacts on the environment	technological applications of science	Describe trends in graphs
		Describe trends in data

Translate data to a representation	Describe methods that can be used	Use data in conclusions
with a model	to tackle problems caused by	Scientific method
	human impacts on the environment	Explain why new data from
		experiments or observations led to
		changes in models or theories
		Use models in explanations or
		match features of a model to the
		data from experiments or
		observations that the model
		describes or explains
		Explain specified examples of the
		technological applications of science

Safety and Risk		
	Safety and Risk	Safety and Risk
Independently recognise risks	Describe risks during specific	Independently recognise controls
<u>Apparatus</u>	practical work	for specific risks and hazards
Independently choose the correct	Identify hazards associated with	<u>Apparatus</u>
equipment	risks	Describe how apparatus can be set
Method	<u>Apparatus</u>	up for practical investigations
Suggest ways to investigate a	Draw the set up of apparatus in	Method
question	specific investigations	Describe a method including some
<u>Variables</u>	Method	of the variables
Identify variables that are difficult to	Describe a basic method including	<u>Variables</u>
control	measurements that must be taken	Explain why it is important to
<u>Graphs</u>	Describe a basic method including	control variables to minimise errors
Plot points on basic line or bar	ranges and intervals	<u>Graphs</u>
graphs	<u>Variables</u>	Draw a line graph independently
Conclusion and Evaluation	Recognise which variables to	Identify anomalies on a line graph
Suggest ways to improve a method	control, measure, and change	Conclusion and Evaluation
Identify anomalies	<u>Graphs</u>	Describe anomalies in terms of
Scientific method	Draw a line graph with support	methodology
Describe specified examples of the	Conclusion and Evaluation	Suggest practical improvements to
technological applications of science	Describe trends in graphs	methodology and data collection
Describe methods that can be used	Describe trends in data	Scientific method
to tackle problems caused by	Use data in conclusions	Decide whether or not given data
human impacts on the environment	Scientific method	supports a particular theory
	Explain why new data from	Give examples of ways in which a
	experiments or observations led to	model can be tested by observation
	changes in models or theories	or experiment
	Use models in explanations or	Make predictions or calculate
	match features of a model to the	quantities based on the model or
	data from experiments or	show its limitations

observations that the model	
describes or explains	
Explain specified examples of the	
technological applications of science	

Basic	Clear	Detailed
Safety and Risk	Safety and Risk	Safety and Risk
Describe risks during specific	Independently recognise controls	Explain risks and how these can be
practical work	for specific risks and hazards	controlled
Identify hazards associated with	<u>Apparatus</u>	<u>Apparatus</u>
risks	Describe measurements taken by	Describe measurements taken by
<u>Apparatus</u>	different pieces of apparatus	different pieces of apparatus
Draw the set up of apparatus in	Method	Method
specific investigations	Describe a method including some	Describe a full method including the
Method	of the variables	three variables
Describe a basic method including	<u>Variables</u>	Explain choices such as intervals and
measurements that must be taken	Explain the impact of not controlling	ranges of different variables
Describe a basic method including	specific variables	<u>Variables</u>
ranges and intervals	<u>Graphs</u>	Explain the impact of not controlling
<u>Variables</u>	Draw a line graph independently	specific variables
Recognise which variables to	Identify anomalies on a line graph	<u>Graphs</u>
control, measure, and change	Conclusion and Evaluation	Draw curves of best fit
<u>Graphs</u>	Describe anomalies in terms of	Conclusion and Evaluation
Draw a line graph with support	methodology	Identify quantitative relationships
Conclusion and Evaluation	Suggest practical improvements to	such as direct proportionality
Describe trends in graphs	methodology and data collection	Critically interpret data
Describe trends in data	Scientific method	Scientific method
Use data in conclusions	Decide whether or not given data	Evaluate methods that can be used
Scientific method	supports a particular theory	to tackle problems caused by
Explain why new data from	Give examples of ways in which a	human impacts on the environment
experiments or observations led to	model can be tested by observation	Suggest why the perception of risk
changes in models or theories	or experiment	is very often different from the
Use models in explanations or	Make predictions or calculate	measured risk
match features of a model to the	quantities based on the model or	
data from experiments or	show its limitations	

observations that the model	
describes or explains	
Explain specified examples of the	
technological applications of science	

Basic	Clear	Detailed
Safety and Risk	Safety and Risk	Safety and Risk
Independently recognise controls	Explain risks and how these can be	Create a risk assessment using
for specific risks and hazards	controlled	suggested controls
<u>Apparatus</u>	<u>Apparatus</u>	Create a risk assessment
Describe how apparatus can be set	Explain how precise measurements	independently
up for practical investigations	can be taken using different pieces	<u>Apparatus</u>
Describe measurements taken by	of apparatus	Independently explain resolution of
different pieces of apparatus	Method	various apparatus
Method	Describe a full method including the	Method
Describe a method including some	three variables	Explain how your method will
of the variables	Explain choices such as intervals and	minimise errors
<u>Variables</u>	ranges of different variables	Evaluate methods and suggest
Explain the impact of not controlling	<u>Variables</u>	improvements that will affect
specific variables	Explain the impact of not controlling	accuracy
<u>Graphs</u>	specific variables	<u>Variables</u>
Draw a line graph independently	<u>Graphs</u>	Explain independent and dependent
Identify anomalies on a line graph	Draw curves of best fit	variables in terms of ranges and
Conclusion and Evaluation	Conclusion and Evaluation	intervals
Describe anomalies in terms of	Identify quantitative relationships	<u>Graphs</u>
methodology	such as direct proportionality	Read data from line or bar graphs
Suggest practical improvements to	Critically interpret data	Conclusion and Evaluation
methodology and data collection	Scientific method	Evaluate conflicting evidence
Scientific method	Evaluate methods that can be used	Justify improvements for
Decide whether or not given data	to tackle problems caused by	methodology
supports a particular theory	human impacts on the environment	Suggest how to improve reliability
Give examples of ways in which a	Suggest why the perception of risk	of data
model can be tested by observation	is very often different from the	Consider limitations in methodology
or experiment	measured risk	and data collection
Make predictions or calculate		Scientific method
quantities based on the model or		Explain that the process of peer
show its limitations		review helps to detect false claims

	and to establish a consensus about which claims should be regarded as valid Explain that reports of scientific developments in the popular media are not subjected to peer review and may be oversimplified, inaccurate, or biased

GO FURTHER: Skills Builder

We are also explicitly embedding transferable 'Skills Builder' skills such as problem solving, aiming high and teamwork to prepare our students for higher education and employability skills for the future. This year in History we will focus on **TEAMWORK** including group decision making and recognising the value of others. **PROBLEM SOLVING** by exploring complex problems by analysing cause and effect, and understanding through research. Furthermore, we want our students to **AIM HIGH** by setting goals, prioritising tasks and involving others.

How does our Curriculum cater for students with SEND?

Sandhill View is an inclusive academy where every child is valued and respected. We are committed to the inclusion, progress and independence of all our students, including those with SEN. We work to support our students to make progress in their learning, their emotional and social development and their independence. We actively work to support the learning and needs of all members of our community.

A child or young person has SEN if they have a learning difficulty or disability which calls for special educational provision to be made that is additional to or different from that made generally for other children or young people of the same age. (CoP 2015, p16)

Teachers are responsible for the progress of ALL students in their class and high-quality teaching is carefully planned; this is the first step in supporting students who may have SEND. All students are challenged to do their very best and all students at the Academy are expected to make at least good progress.

Specific approaches which are used within Science include:

- Seating to allow inclusion
- Scaffolding to stretch and support in all lessons
- Resources are accessible yet challenging
- Displays and visual learning tools are used where necessary
- Where appropriate, support from additional adults is planned to scaffold students learning
- Group work and discussion
- Clear teacher/student communication
- Feedback that allows students to make progress, whether written or verbal
- Independent study/homework.
- Intervention when required

How does our curriculum cater for disadvantaged students and those from minority groups?

As a school serving an area with high levels of deprivation, we work tirelessly to raise the attainment for all students and to close any gaps that exist due to social contexts. The deliberate allocation of funding and

resources has ensured that attainment gaps are closing in our drive to ensure that all pupils are equally successful when they leave the Academy. More specifically within the teaching of Science, we;

- work to identify barriers, interests and what might help each pupil make the next steps in learning.
- provide targeted support for under-performing pupils during lesson time, such as targeted questioning, live marking and seating
- ensure there are opportunities for students to make use of resources and gain homework support outside of lesson time through the use of Teams
- provide students with revision materials to reduce financial burden on families

How do we make sure that our curriculum is implemented effectively?

- The Science curriculum leader is responsible for the design and implementation of the curriculum including quality assurance of lesson resources, schemes of learning, and assessments, as well as the monitoring and evaluation of this implementation to measure the impact.
- The subject leader's monitoring is validated by senior leaders.
- Staff have regular access to professional development/training to ensure that curriculum requirements are met and subject knowledge developed.
- Effective assessment informs staff about areas in which interventions are required. These
 interventions are delivered during curriculum time to enhance pupils' capacity to access the full
 curriculum.
- Curriculum resources are selected carefully and reviewed regularly.
- Assessments are designed thoughtfully to assess student progress, long term knowledge retrieval and also to shape future learning.
- Assessments are checked for reliability within departments and across the Trust.

There are several Science staff who mark for exam boards and provide vital CPD to the rest of the department to ensure reliability of data.

Gap analysis spreadsheets are used to identify areas of development for students at KS4 to identify areas of weakness. Enhanced results analysis is also used to identify departmental priorities for development to ensure students are making the highest progress.

How do we make sure our curriculum is having the desired impact?

- Examination results analysis and evaluation.
- Half-termly assessments based upon substantive and disciplinary knowledge covered during this time.
- Lesson observations.
- Learning walks for KS3 and KS4 based upon departmental priorities.
- · Work sample for each year group.
- Regular feedback from teaching staff during department meetings.
- Regular feedback from Middle Leaders during curriculum meetings.
- · Pupil Surveys.
- Parental feedback.
- Staff feedback through staff voice surveys.