SUBJECT: Maths – Y9 Foundation

UNIT: (

Algebra

SANDHILL VIEW

Key Concepts

A formula involves two or more letters, where one letter equals an expression of other letters.

An **expression** is a sentence in algebra that does NOT have an equals sign.

An **identity** is where one side is the equivalent to the other side.

When **substituting** a number into an expression, replace the letter with the given value.

Key Words

Substitute

Equation

Formula

Identity Expression

- Examples

 1) $5(y+6) \equiv 6y+30$ is an identity as when the brackets are expanded we get the answer on the right hand side
- 2) 5m 7 is an expression since there is no equals sign
- 3) 3x 6 = 12 is an equation as it can be solved to give a solution
- 4) $C = \frac{5(F-32)}{9}$ is a formula (involves more than one letter and includes an equal sign)
- 5) Find the value of 3x + 2 when x = 5

$$(3 \times 5) + 2 = 17$$

Where $A = b^2 + c$, find A when b = 2 and c = 36)

$$A = 2^2 + 3$$

$$A = 4 + 3$$

$$A = 7$$

Questions

1) Identify the equation, expression, identity, formula from

the list (a)
$$v = u + at$$

(b)
$$u^2 - 2as$$

(c)
$$4x(x-2) = x^2 - 8x$$
 (d) $5b-2=13$

(d)
$$5b-2=13$$

- 2) Find the value of 5x 7 when x = 3
- 3) Where $A = d^2 + e$, find A when d = 5 and e = 2

SUBJECT: Maths

UNIT:

Sequence

SANDHILL VIEW

Key Concepts

Arithmetic or linear sequences

increase or decrease by a common amount each

Geometric series has a common multiple

between each term.

Quadratic sequences

include an n^2 . It has a common second difference.

Fibonacci sequences

are where you add the two previous terms to find the next term.

Linear/arithmetic sequence: -3 +3 +3 +3 +3

+1 4 7 10 13 16.....

a) State the nth term

3n + 1

The 0th term Difference

b) What is the 100th term in the sequence?

$$3n + 1$$

 $3 \times 100 + 1 = 301$

c) Is 100 in this sequence?

$$3n + 1 = 100$$

3n = 99

n = 33

Yes as 33 is an integer.

Pattern 1 Pattern 2

Examples

Linear sequences with a picture:

State the nth term.

Hint: Firstly write down the number of matchsticks in each image:

7n + 1

	Pattern 1	Pattern 2	Pattern 3
+1	8	15	22
1			
	-7 +	7 +	-7

Geometric sequence e.g.

Quadratic sequence e.g. $n^2 + 4$ Find the first 3 numbers in the sequence

First term: $1^2 + 4 = 5$

Third term: $3^2 + 4 = 13$

Second term: $2^2 + 4 = 8$

Key Words

Linear Arithmetic Geometric Sequence Nth term

- 1) 1, 8, 15, 22,
- a) Find the nth term b) Calculate the 50th term c) Is 120 in the sequence?
- 2) $n^2 5$ Find the first 4 terms in this sequence