SUBJECT: Maths – Y9 Higher

UNIT:

Algebra -sequences

Key Concepts

Arithmetic sequences

increase or decrease by a common amount each time.

Quadratic sequences have a common 2nd difference.

Fibonacci sequences

Add the two previous terms to get the next term

Geometric series has a common multiple between each term

Linear sequences:

- 4 , 7, 10, 13, 16.....
- **Examples**
- a) State the nth term b) What is the 100th term in the sequence?
- The 0th term 3n + 1Difference

$$3 \times 100 + 1 = 301$$

c) Is 100 in this sequence?

$$3n + 1 = 100$$
$$3n = 99$$

$$n = 33$$

Yes as 33 is an integer.

$$2a = 4$$
 $3a + b = 6$ $a + b + c = 3$
 $a = 2$ $3 \times 2 + b = 6$ $2 + 0 + c = 3$
 $b = 0$ $c = 1$

$$2n^2 + 0n + 1 \rightarrow 2n^2 + 1$$

Key Concepts

A formula involves two or more letters, where one letter equals an expression of other letters.

An **expression** is a sentence in algebra that does NOT have an equals sign.

An **identity** is where one side is the equivalent to the other side.

When substituting a number into an expression, replace the letter with the given value.

Examples

- 1) $5(y+6) \equiv 5y+30$ is an identity as when the brackets are expanded we get the answer on the right hand side
- 2) 5m 7 is an expression since there is no equals sign
- 3) 3x 6 = 12 is an equation as it can be solved to give a solution
- 4) $C = \frac{5(F-32)}{9}$ is a formula (involves more than one letter and includes an equal sign)
- Find the value of 3x + 2 when x = 55)

$$(3 \times 5) + 2 = 17$$

Where $A = b^2 + c$, find A when b = 2 and c = 3

$$A = 2^2 + 3$$

$$A = 4 + 3$$

$$A = 7$$

Key Concepts

Solving equations:

Working with inverse operations to find the value of a variable.

Rearranging an equation:

Working with inverse operations to isolate a highlighted variable.

In solving and rearranging we undo the operations starting from the last one.

Solve:

$$7p - 5 = 3p + 3$$
 $-3p$
 $4p - 5 = 3$
 $+5$
 $4p = 8$
 $\div 2$
 $p = 2$

+15

Solve:

$$5(x-3) = 4(x+2)$$

expand expand
 $5x-15 = 4x+8$
 $-4x$ $-4x$
 $x-15 = 8$

x = 23

+15

Examples

Rearrange to make r the subject of the formulae:

$$Q = \frac{2r - 7}{3} \times 3$$

$$3Q = 2r - 7$$

$$3Q + 7 = 2r$$

$$\frac{\div 2}{\frac{3Q+7}{2}} = r$$