Sandhill View

Science Curriculum Policy

Aspire, Achieve, Enjoy

Academy Aim

Here at Sandhill View Academy, we aim to securely equip <u>all</u> of our students for life beyond school as successful, confident, responsible and respectful citizens. We believe that education provides the key to **social mobility** and our curriculum is designed to build strong foundations in the knowledge, understanding and skills which lead to **academic and personal success**. We want our students to **enjoy** the challenges that learning offers. Ultimately, we want students to '*Know More, Do More and Go Further*'

Our aims are underpinned by a culture of **high aspirations**. Through developing positive relationships, we work towards every individual having a strong belief in their own abilities so that they work hard, build resilience and **achieve** their very best.

Intent

We aim to provide a high-quality science education that provides the foundations for understanding the world through the disciplines of biology, chemistry and physics. Science is vital to the world's future prosperity, and our curriculum allows students to develop and apply their substantive knowledge, disciplinary knowledge and discover and participate within STEM careers. Through building up a body of core knowledge and concepts, pupils are encouraged to recognise the power of rational explanation and develop a sense of excitement and curiosity about natural phenomena. They will be encouraged to understand how science can be used to explain what is occurring, predict how things will behave, and analyse causes.

The curriculum aims to ensure that knowledge is taught to be remembered, not encountered. The curriculum embraces learning from cognitive science about memory, forgetting and the power of retrieval practice. Knowledge for each scheme is planned to be interleaved with prior and future learning to support students' understanding of the most complex concepts.

The curriculum aims for pupils to:

- Develop scientific substantive knowledge;
- Develop understanding of the nature, processes and methods of science through different types of scientific enquiry that help them answer scientific questions about the world around them;
- Develop and apply disciplinary knowledge such as: observational, practical, modelling, enquiry, problem solving and mathematical skills, both in the laboratory, in the field and other environments;
- Develop their ability to evaluate claims based on science through critical analysis of the methodology, evidence and conclusions, both qualitatively and quantitatively.

Each topic within the programme of study has a career attached which is covered, in detail, on a local, national, and global level. In addition to subject specific links, we aim to explicitly reinforce the skills and aptitudes which employers say are important in the workplace;

- Resilience (Aiming High, Staying Positive);
- Collaboration (Teamwork, Leadership, Listening, Speaking);
- Creativity (Problem Solving).

The British values of democracy, the rule of law, individual liberty, and mutual respect of those with different faiths and beliefs are taught explicitly and reinforced in the way in which the school operates.

Sequence and structure

COVID Recovery 'Unlocking Learning'

As the impact of COVID is now impacting on students who missed learning during KS2 all students complete a baseline assessment upon entering the Science curriculum in September. This allows for an understanding of the gaps in pupil knowledge and how to further support their progress in future planning. Many students missed the opportunity to complete practical activities that further develop their disciplinary knowledge and therefore an emphasis on students accessing practical experimental work is made. Students complete skills-based units throughout Year 7 and Year 8 to support student transition to Secondary education.

Literacy

We know that students who read well achieve well. As such all subject areas are committed to providing regular opportunities to read extensively. In Science we provide opportunities for students to read Tier 2 and Tier 3 vocabulary with an emphasis on comprehension and application. We also support our students to use ambitious vocabulary including using Frayer models and 'push' techniques to widen the vocabulary students can confidently include in the work they produce. Coherent and fluent writing skills are also imperative for student achievement, so we support student writing skills by offering opportunities for extended writing, with modelling, and sentence stems to support.

The Key Stage 3 Science Curriculum:

KNOW MORE: Our Key Stage 3 Science Curriculum includes the following areas of study:

Three year KS3 where students complete the KS3 National Curriculum as well as bridging topics known as 'Fundamentals' to support students accessing KS4. There are 8 hours per fortnight for Year 7, Year 8, and Year 9.

KS3	Half Term 1	Half Term 2	Half Term 3	Half Term 4	Half Term 5	Half Term 6
Year	Topic title and	Topic title and	Topic title	Topic title	Topic title and	Topic title and
7	key concept:	key concept:	and key	and key	key concept:	key concept:
1	Introduction to Science – a topic focused on key scientific apparatus and practical skills. Substantive Knowledge:	Particle Model - the three states of matter and the processes of changing between them. This unit also includes a	concept: Speed – this topic focuses on calculating and investigating speed of objects and	concept: Elements – an introduction to atoms, elements, and compounds and how	Human reproduction – the study of how humans develop as they go through puberty as well as the parts of the	Acids and alkalis – this topic focus on testing for acids and alkalis as well as indicators and how neutralisation
	What are key pieces of apparatus and how are they	focus on gases and how they exert pressure	how this can be represented	these are written as scientific	reproductive systems and how fertilisation	reactions occur. Substantive
	used? <u>Disciplinary</u> <u>knowledge</u> <u>Students</u>	on objects. Substantive Knowledge: What are the three states	graphically. There are also links to changes in speed and	Substantive Knowledge:	and gestation occur. Students also discuss contraception and infertility.	Knowledge: How can we identify acids and alkalis?
	<u>complete</u>			difference		

practical	of matter and	the ideas of	between	Substantive	
<u>activities</u>	what are the	acceleration.	atoms,	Knowledge:	Dissiplinam
including lighting	processes	Substantive	elements,	How do	<u>Disciplinary</u> knowledge:
<u>a bunsen</u>	involved in	Knowledge:	and	animals	Students
burner, heating	changing	How can	compounds	reproduce?	investigate
water, making a	between	speed be	and how are		different
flare as well as	them?	measured,	these		indicators and
labelling key		calculated,	represented	Disciplinary	test
scientific		and	?	knowledge:	chemicals to
apparatus and	Disciplinary	represented		Students look	discover if
introductions to	knowledge:	graphically?		at models of	they are
hazard symbols	<u>Practical</u>	g. upouy :	Disciplinary	concepts such	acidic or
and their	<u>activities</u>		knowledge:	as gestation,	alkaline.
meanings.	include melting	Dissiplinary	Students can	conception and	Students will
	and freezing	<u>Disciplinary</u> knowledge:	complete	discuss ethical	complete
	substances	There is a	practical	issues with	neutralisation
Cross-curricular	and measuring	practical	activities	contraception	reactions and
knowledge:	the .	investigation	focussing on	and infertility	discover what
Links to maths –	temperature of	included in	conservation		<u>happens</u>
reading from a	this.	this topic that	of mass and		when acids
scale.	<u>Demonstration</u>	focuses on	how this links	Cross-curricular	and alkalis
Topic title and	s of gas pressure are	calculating	to word equations	knowledge:	<u>are</u>
key concept:	also used to	speed by	equations	Links to child	combined.
	integrate	measuring		development	
Cells – the study	learning with	the distance	_	and the	
of animal and	practical	travelled and	Cross-	gestation	Cross-
plant cells and	observations.	time of a	curricular	period of the	curricular
their organelles	<u> </u>	moving	knowledge:	foetus	knowledge:
including		object.	Links to	Topic title and	Links to food
specialised cells in animals and	Cross-	Students also	maths for	key concept:	technology as
plants. Students	curricular	work on	balancing		students test
also focus on	knowledge:	<u>graphs</u>	equations	Variation – this	some foods
key concepts	Graph skills	representing		topic focusses	using
such as	link with maths	journeys as	Topic title	on the variation	different
diffusion to link		both	and key	within species and how this	indicators
with substances	Topic title and	distance-time and velocity-	concept:	variation can be	
entering and	key concept:	time graphs.	Periodic	beneficial for	Topic title and
exiting cells.	Separating	There are	Table – A	evolution	key concept:
	mixtures – the	also	study of the	evolution	Earth's
Substantive	study of	opportunities	properties of	Substantive	Structure – a
Knowledge:	compounds	to use	elements in	Knowledge:	topic
What is the structure and	and mixtures	equations	different	How does	focussed on
function of	and scientific	and calculate	groups based	variation	how rocks are
organelles in	techniques	speed, and	on their	occur in	formed
different cells?	used to	acceleration	positions in	humans?	including the
amoroni odno:	separate them.	from formula.	the periodic		composition
			table.		of the Earth
Disciplina	Substantive		Substantive	Disciplinary	and specific
Disciplinary	Knowledge:	Cross-	Knowledge:	knowledge:	formations
knowledge:		curricular		<u>Students</u>	
<u>Practical</u>					

How can knowledge: How is the such as activities in this investigate Links to the periodic topic include mixtures be environmental ceramics. separated maths table preparing slides and inherited Substantive of animal and based on curriculum organised? characteristics Knowledge: plant cells and their through the and how this How are component viewing these speed = variation is rocks substances? distance/time representative under a Disciplinary formed? microscope. equation as of the human knowledge: Students can well as population also complete calculating Students Disciplinary calculations of acceleration complete a Disciplinary knowledge: knowledge: magnification for using the practical Cross-curricular microscopic rearrangeme There are investigation **Practical** knowledge: nt of formula samples. of the investigations several Links to the and practical in this unit properties of mathematics substitution. activities in this include group 1 curriculum topic including metals. reactions of Cross-curricular through the Topic title filtering Students metals and knowledge: study of data; and key <u>insoluble</u> complete an rocks to Links to continuous and concept: solids and investigation observe their adaptations of discontinuous solvents, into composition. Interdepende cells including and how it can crystallisation displacement single celled nce be displayed of soluble reactions. students organisms to solids and study the Geography Crosssolvents, relationships curricular Topic title and distillation of between Crossknowledge: mixtures of key concept: predators curricular Links to liquids, and and prey and knowledge: geography Movement - the chromatograph how they and outdoor study of how the y used to Links to connect learning but human body engineering separate through food studying how facilitates and the colours. chains and rocks are movement Students also properties of food webs. formed and including joints, focus on materials There is also how this rock muscles, and scientific a focus of cycle leads to bones. Topic title method how humans changes in and key including Substantive affect these rock concept: planning Knowledge: including formation. practical using How do Energy costs methods and Topic title and muscles. chemicals and transfers graph skills. key concept: bones, and such as – how joints create pesticides electricity is Universe movement in and generated this topic fertilisers. the human Crossand the cost consists of body? curricular of this to objects in the Substantive knowledge: people night sky and Knowledge: the night sky How are Links to graph **Substantive** Disciplinary as well as skills covered animals and Knowledge: knowledge: how they plants in the maths What does it influence our **Practical** curriculum connected? cost to

understandin

g of

activities include

a muscle

<u>strength</u>	Topic title and		generate	phenomena
practical	key concept:	Dissiplinary	electricity?	on earth such
focussing on	Gravity – the	<u>Disciplinary</u>		as the
antagonistic antagonistic	study of	knowledge: Students		seasons and
muscles.	gravity, mass,	develop their	Disciplinary	the phases of
	and weight	understandin	knowledge:	the moon
	and the	g of scientific	The	Substantive
Cross-curricular	physical laws	diagrams and	development	Knowledge:
knowledge:	that connect	how they can	of	What is the
Links to PE and	them.	be explained	mathematical	composition
muscle strength	aronn.	ВО ОХРІАНІО	skills by	of space?
including how	Substantive		calculating	от оразот
muscles can be	Knowledge:		energy in	
built through		Cross-	<u>various</u>	D
exercise.	How are	curricular	scenarios	Disciplinary
	mass, weight,	knowledge:		knowledge: A
	and gravity	Links to the		practical
	connected?	geography	Cross-	investigation
		and outdoor	curricular	into the
		learning curriculum	knowledge:	impact of
	<u>Disciplinary</u>	through the	Links to	meteors on the surface of
	knowledge:	use of	engineering	the Earth and
	Dragtical	fertilisers and	and how	how scientists
	Practical activities	pesticides	electricity is	can
	include	and how they	generated in	<u>determine</u>
	measuring	lead to	power	information
	forces using	bioaccumulat	stations	about these
	newton meters	ion		meteors from
	for different	1011		their craters.
	masses to	Topic title		
	determine the	and key		
	value of	concept:		Cross-
	gravitational	Plant		curricular
	field strength	reproduction		knowledge:
	on Earth.	- the main		Links to the
	Students are	reproductive		mathematics
	also able to	organs in		curriculum
	draw	plants and		including
	conclusions	how they		calculations
	from	lead to		of orbits
	demonstration	pollination		or orbito
	s of objects	and		
	falling in a	germination.		
	vacuum.	gommadon.		
		Substantive		
		Knowledge:		
	Cross-	How do		
	curricular	plants		
	knowledge:	reproduce?		
	Links to using			
	and and			

and

Year	Topic title and	rearranging equations with the maths curriculum as well as a focus on graph skills.	Disciplinary knowledge: Students complete a practical activity related to the shape of seeds and their dispersal methods including graphical skills, writing methods, apparatus, and writing conclusions and evaluations. Cross-curricular knowledge: Links to geography and outdoor learning for how plants spread their seeds and are fertilised by pollinators	Topic title	Topic title and	Topic title and
8	key concept: Light waves –	key concept: Digestion: the	and key concept:	and key concept:	key concept: Inheritance –	key concept: Climate – the
	light is a wave that transfers	main nutrients found in food	Photosynthes is – the study	Contact forces – the	students develop their	study of the Earth's

	1		1	1	
energy from a	and how are	of the	study of	understanding	atmosphere,
luminous object.	they broken	process of	forces and	of genetics	changes to
Light travels in	down in the	photosynthes	how forces	including the	this including
straight lines	body.	is and some	can cause	history of DNA	climate
and can reflect	Cubatantius	factors that	movement	and how	change and
and refract	Substantive	can affect the	when they	characteristics	how the
based on the	Knowledge:	rate	are not in	are inherited	carbon cycle
density and	What is a	0	equilibrium	Out of author	is affected by
surface of an	balanced diet	Substantive	Out of outless	Substantive	living
object.	and how does	Knowledge:	Substantive	Knowledge:	organisms
Out of author	our body	How do	Knowledge	What is the	Out of and the
Substantive	digest food?	plants	How do	structure of	Substantive
Knowledge:		produce	different	DNA?	Knowledge:
What is light		glucose?	forces affect		What is the
and how does	Disciplinary		objects?		carbon cycle
it travel?	knowledge:			<u>Disciplinary</u>	and how do
Disciplinary	The main	Disciplinary		knowledge:	humans
knowledge:	practical	knowledge:	Disciplinary	Students	affect it?
Practical	activity is	Students	knowledge:	develop their	
activities include	testing foods	investigate	Students	understanding	
investigating	for different	some factors	complete	of data by	Disciplinary
angles of	nutrients	that affect the	practical	focussing on	knowledge:
reflection as well	including how	rate of	activities	continuous and	Students
as angles of	to recognise	photosynthes	focussing on	discontinuous	develop their
refraction.	positive tests.	<u>is</u>	elastic	data and how	understandin
Students also			objects, as	this is displayed	g of data by
focus on			well as drag		focussing on
improving their	Cross-	Cross-	forces for		analysing
mathematical	curricular	curricular	solids, and	Cross-curricular	<u>graphs</u>
skills by using a	knowledge:	knowledge:	<u>liquids.</u>	knowledge:	showing
protractor to	Links to			Links to the	<u>carbon</u>
measure angles.	catering and a	Links to		maths	dioxide levels
	balanced diet.	geography	Cross-	curriculum and	in the
		and	curricular	displaying data	<u>atmosphere</u>
Cross-curricular	Topic title and	adaptations	knowledge:		over time
knowledge:	key concept:	of plants for	Links to	Topic title and	
Links to	Proothing:	different	engineering	key concept:	
mathematics	Breathing: What the	climates	based on	Evolution – the	Cross-
and measuring	composition of	Topic title	moments and	study of how	curricular
angles using a	the air is and	and key	the effect of	DNA	knowledge:
protractor	how gases	concept:	turning	inheritance can	Links to
Protitation	travel through	Types of	forces.	cause changes	Geography
Topic title and	the body to the	reaction – in	_ ,	in species over	and how the
key concept:	alveoli to be	this topic	Topic title	time	changing
0	diffused into	students	and key	a.rio	climate
Sound waves:	the blood.	develop their	concept:	Substantive	affects
sound is a	and blood.	understandin	Pressure –	Knowledge:	populations
longitudinal	Substantive	g of chemical	this topic	What is the	Tamia (ilia a d
wave that	Knowledge:	reactions	studies	process of	Topic title and
requires a	What is the	including	pressure in	evolution?	key concept:
medium to travel		chemical and	solids,		Earth's
through.		physical	liquids, and		resources -
1		7.1.7.2.2.2	1	1	

Students focus process of changes as gases students on the pitch and breathing? well as including discover how Disciplinary loudness of some factors metals are thermal knowledge: sounds and how decompositio that affect extracted **Students** oscilloscope n and this. from the Disciplinary analyse data to Farth and traces represent combustion knowledge: **Substantive** identify sound waves as as examples how humans Students Knowledge: changes in well as uses of of chemical try to completed What are species over sound waves by reactions conserve skills work on factors that time humans and these measuring Substantive affect animals. materials their lung Knowledge: pressure in through volume and different **Substantive** What are Cross-curricular recycling comparing this Knowledge: different changes of knowledge: to other body types of state? Links to How can the qualities such chemical mathematics Substantive pitch and as height. reactions? including loudness of Knowledge: Disciplinary displaying and sound waves How are analysing data knowledge: metals be changed? Cross-Disciplinary Students obtained? curricular Disciplinary knowledge: watch knowledge: knowledge: Students demonstratio Links to PE Teacher led complete ns of and the effect Disciplinary demonstrations practical pressure in of exercise on knowledge: of sound in a activities solids, the body. Students vacuum. including liquids, and focus on combustion, gases Topic title and extracting and thermal including how key concept: methods decompositio factors can Cross-curricular used by Respiration: n. There is a affect knowledge: scientists and the study of development pressure. Links to pitch how these the process of of student and loudness of <u>have</u> respiration understandin sound waves to changed over including the g of Music Crosstime different types conservation curricular Topic title and and how it is of mass knowledge: through key concept: used to make Links to Crossproducts such investigations engineering Electricity – this as alcoholic into mass curricular as the use of topic includes drinks and changes. knowledge: hydraulics circuit symbols Links to bread. and their uses engineering Substantive as well as the and how Crossconcepts of Knowledge: metals are curricular potential What are the extracted knowledge: different difference. from the Links to current and how types of Earth geography static electricity respiration relating is caused. and how are changes of they used? **Substantive** state to Topic title and physical Knowledge: key concept:

changes

How are

	B: : !!			<u></u>
circuits made	Disciplinary	rather than		Electromagne
and what	knowledge:	chemical		ts – the study
materials can	Practical	changes.		of permanent
be used?	activity on the	Topic title		and
	effect of	and key		temporary
	exercise on breathing rate	concept:		magnets and how different
<u>Disciplinary</u>	and heart rate			materials are
knowledge:	and near rate	Chemical		affected in
Students make		Energy – this		their
a variety of		topic		magnetic
circuits using	Cross-	focusses on		fields
different	curricular	energy		
components and	knowledge:	changes		Substantive
test materials to	Links to PE	during		Knowledge:
see whether	and how respiration in	chemical reactions and		What are
they can be used in	exercise	how this can		permanent
electrical	affects the	be measured		and
circuits.	body	be measured		temporary
circuits.	body	Substantive		magnetic
		Knowledge:		fields?
Cross-curricular		What are		
knowledge:		endothermic		Disciplinary
Links to		and exothermic		knowledge:
engineering and		reactions?		Students test
electrical circuits		reactions?		different
				materials to
				discover
		Disciplinary		magnetic and
		knowledge:		non-magnetic
		Students		materials.
		complete a		Students also
		skills		complete a
		investigation		skills
		focussed on		investigation
		temperature		into factors
		changes in		that affect the
		chemical		strength of
		reactions.		temporary magnetic
		Students also		fields
		focus on		noius
		graph skills		
		and		0
		representing		Cross-
		data in		curricular
		different		knowledge:
		forms.		Links to
				engineering and the
				development
				of locking
				or locking

Crossmechanisms curricular as well as knowledge: loudspeakers Links to the and mathematics microphones using the curriculum through motor effect calculating means, and data analysis including graph skills Topic title and key concept: Metals and Non-Metals the study of the reactions of metals and non-metals with other chemicals such as acids and oxygen. Substantive Knowledge: How do metals react with different chemicals? Disciplinary knowledge: Students identify properties of metals and non-metals by testing them. There is also an investigation into the reactions of metals and acids and

how this links

			to the reactivity series			
			Cross- curricular knowledge:			
			Links to mathematics and data analysis including calculating a mean and representing data in graphical forms.			
Year	Topic title and	Topic title and	Topic title	Topic title	Topic title and	Topic title and
9	key concept:	key concept:	and key	and key	key concept:	key concept:
	Fundamentals:	Fundamentals:	concept:	concept:	Fundamentals:	Fundamental
	The Body –	Materials -	Fundamental	Fundamental	Reactions –	s: Atoms –
	Students	Students	s: Energy	s: Plants –	Students	students
	develop their	develop their	Transfers –	students	investigate how	discover how
	understanding	understanding	students	develop their	to identify	different
	of cells by	of elements,	work on	understandin	gases	materials can
	studying	compounds,	describing	g of plants by	produced in	change
	prokaryotes and	and mixtures	and	looking at	chemical	between
	eukaryotes and viewing cells	including how mixtures are	calculating	plant tissues and organ	reactions such as the	states and link this to the
	under a	separated.	energy transfers and	systems. The	conservation of	density of the
	microscope.	Students also	link this to	topic includes	mass	substance.
	Students also	focus on the	electric	the equation	examples. This	Students also
	link the	layout of the	circuits.	for	topic also	focus on the
	movement of	periodic table	Students also	photosynthes	includes a	structure of
	substances in	and the mass	discover how	is and biotic	study of the	the atom and
	and out of cells	and formula of	forces are	and abiotic	process of	how our
	to the processes the substances	compounds.	involved in energy	factors that affect plants.	electrolysis and separating ionic	model of the atom has
	are involved in.	Substantive	transfers and	anou piants.	compounds.	developed
	Students also	Knowledge:	how reaction	Substantive	,	over time.
	look at the	What are	time and	Knowledge:	Substantive	
	movement of	elements,	stopping	What are factors that	Knowledge:	Substantive
	pathogens into	compounds, and mixtures	distance are	affect plant	What are the tests for	Knowledge: How is the
	the body and	and how are	affected by	tissues and	different	density of
	the recognisable symptoms they	elements	different factors	organs?	gases?	objects
	Symptoms mey	displayed on	idoloro	=		affected by

produce in the body.	the periodic table?	Substantive Knowledge:	Disciplinary	How does electrolysis	changes of state?
Substantive Knowledge: What	Disciplinary knowledge: Practical	energy transfers	knowledge:Pr actical activities for	separate ionic compounds?	What is the structure of the atom and
Knowledge:	knowledge:		knowledge:Pr actical	Disciplinary knowledge: Students can benefit from demonstrations of chemical reactions that produce gases and what positive tests for each gas are. Students can also complete investigations into electrolysis. Students can complete practical investigations into endothermic and exothermic reactions and how these reactions are measured using temperature changes Cross-curricular knowledge:	structure of
				Links to engineering and the extraction of metals using electrolysis	

KNOW MORE: Our Key Stage 4 Curriculum

The KS4 Curriculum is taught over 2 years. Y10 and Y11 have 12 hours of Science per fortnight. 11/Sc1 complete AQA GCSE Separate Science (8461, 8462, 8463) whilst all other classes complete AQA GCSE Combined Science (8464).

KS3	Half Term 1	Half Term 2	Half Term 3	Half Term 4	Half Term 5	Half Term 6
NOS	nali reim T	⊓ali Term ∠	naii ieim 3	nali Term 4	⊓ali Tei™ 5	riali Term 6
Year	Topic title and	Topic title and	Topic title	Topic title	Topic title and	Topic title and
10	key concept:	key concept:	and key	and key	key concept:	key concept:
			concept:	concept:		
	Cells – this topic	Energy and		5 1	Metals and	Inheritance
	focuses on cell	electricity	Infection and	Plants and	acids – this	and Variation
	specialisation	Substantive	body	nutrients –	topic focusses	- this topic
	and	Knowledge:	response –	This topic	on extracting	focuses on
	differentiation	How is the	this topic	focusses on	metals from	DNA and how
	including	efficiency of	focusses on	the process of	ores using	this is passed
	chromosomes and mitosis.	devices	pathogens	-	displacement reactions and	on through sexual and
	anu miii0818.	calculated?	and how they enter the	photosynthes is including	the process of	asexual and
	Substantive		body and	limiting	electrolysis. It	reproduction.
	Knowledge:	How is	then the body	factors and	also covers	Students also
	What are	electricity	response to	how plants	acids and	discover how
	specialised	generated	the presence	store and use	alkalis and their	characteristic
	cells? How do	and then	of pathogens.	glucose. It	neutralisation	s are
	cells become	transferred to	Students also	also links this	reactions and	inherited and
	specialised?	homes?	study artificial	to respiration	temperature	that variation
	Disciplinant	How do	methods of	and the role	changes in	in species
	<u>Disciplinary</u>	electrically	provoking	of glucose in	specific	can lead to
	knowledge:	charged	body	aerobic and	reactions.	evolution in a
	Students can view specialised	particles	response	anaerobic		species and
	cells under a	interact?	such as	respiration.	Substantive	how species
	microscope.		vaccines,		Knowledge:	that are
	There is also a		and other	Substantive	How are	unable to
	required	Disciplinary	medicines	Knowledge:	metals	evolve risk
	practical	knowledge:	such as	How do	extracted from	becoming
	focussing on	Students	antibiotics	plants make	ores? What	extinct.
	osmosis and the	complete two	and	and store	are the	Substantive
	movement of	required	painkillers.	glucose?	products of	Knowledge:
	water into and	practicals	Substantive	How is	electrolysis?	What is the
	out of cells	measuring	Knowledge:	glucose	What is	structure of
	based on	resistance in	Tallowicage.	used in	neutralisation	DNA and
	concentration	circuits and	What are	aerobic and	? What are	how is it
	gradients.	through	pathogens	anaerobic	exothermic	replicated?
	Cross sumisular	<u>different</u>	and how do	respiration?	and	
	Cross-curricular	components.	they enter		endothermic	What is
	knowledge: Links to	Students can	the body?		reactions?	evolution
	mathematics	also complete	How does	Disciplinary		and how can
	with the	practical work	the body	knowledge:		organisms
	calculation of	wiring a plug.	respond to	Students	Disciplinary	evolve over
	percentage	Cross-	the	investigate	knowledge:	time?
	change in mass	curricular	presence of	reaction time		
	of plant tissues.	knowledge:	pathogens?	and factors	Practical	
	5. p.a 100000.	Links to the	F	that can	activities	
		Linko to trio		affect this	<u>include</u>	

Topic title and key concept:

Periodic table and bonding

Substantive Knowledge: What are trends in properties of groups on the Periodic table?

How do elements bond together?

What are properties of compounds?

Disciplinary knowledge: Students can <u>observe</u> reactions of alkali metals with oxygen and water.

Cross-curricular knowledge: Links to mathematics curriculum with the balancing of equations.

mathematics curriculum by using equations and calculating different quantities.

Topic title and key concept:

The Body this topic focuses on body systems as their processes such as circulatory and respiratory systems and the digestive system. It links with noncommunicable diseases such as CHD and risk factors for these

Substantive Knowledge: What is the structure and function of body systems? How does the body break down and absorb nutrients? What are risk factors for noncommunicabl e diseases

Disciplinary knowledge: Students investigate how nutrients are tested for

intake of Disciplinary knowledge:

complete practical activities looking at the growth of bacteria from different surfaces to show pathogen

Students can

effectiveness disinfectants

transfer or

the

at removing bacteria from surfaces.

> Crosscurricular knowledge: Links to the History curriculum and pathogens as causes for disease throughout history.

Topic title and key concept:

Atoms and radiation this topic focusses on changes of state and the internal energy of substances includina

including the caffeine and distractions.

Crosscurricular knowledge: Links to the PF curriculum measuring reaction time required practical based on the electrolysis of aqueous solutions. Students also complete a required practical focussing on temperature changes in chemical reactions as well as optional examples of endothermic and exothermic reactions.

displacement

reactions and a

Cross-curricular knowledge: Links to Geography and mining and quarries as geographical features.

key concept:

study of contact and noncontact forces and how these forces can be measured and calculated in various scenarios. Students also study the motion of objects and calculate the

Disciplinary knowledge:

Students have the opportunity to create models of the double helix structure of DNA. Students use various models to show the process of evolution and how a change in environment and variation do not always lead to an <u>organism</u>

evolving.

Topic title and

Forces – the velocities and in specific foods as well as the effect of pH and temperature on the rate of <u>enzyme</u> activity. Students also study the heart and can complete dissections themselves or access teacher demonstration of these.

Crosscurricular knowledge: Links to food technology and how nutrients are digested and absorbed in the body. Links to PE and the effect of exercise on the rate of respiration.

Topic title and key concept:

Chemical measurements students focus on measurements and calculations of quantities during chemical reactions including balancing equations, relative formula mass,

heating and cooling curves. Students also focus on the arrangement and motion of particles in solids, liquids, and gases and the limitations of this model. Students then move on to look at a more in depth model of the atom and how it is affected by the release of nuclear radiation, the half life of this radiation, and how objects can become irradiated or

Substantive Knowledge:

contaminated

What are changes of state and how is internal energy measured and changed?
What is nuclear radiation and what

are its

properties?

accelerations of objects.

Substantive Knowledge:

What are forces and how can they be calculated?

How can the motion of objects be described and quantified based on the forces acting on it?

Disciplinary

knowledge:

There are a

variety of practical activities in this topic including the measurement of weight and mass to determine the value of gravitational field strength on Earth. Students investigate acceleration and how the force applied to an object can increase its acceleration proportionally.

Cross-curricular knowledge: Links to the mathematics curriculum as

	concentration		students	
	calculations,	5	rearrange,	
	and limiting	Disciplinary	substitute and	
	reactants.	knowledge:	calculate	
		<u>Students</u>	quantities using	
	Substantive	<u>discuss</u>	equations	
	Knowledge:	models of the	- 4	
		atom and		
	What is	how		
	conservation	observational		
	of mass?	evidence has		
	Hamana	caused		
	How are	scientists to		
	moles	change these		
	balanced in	models.		
	chemical	Students also		
	reactions?	use a		
		modelled		
		example to		
	Disciplinary	investigate		
	knowledge:			
	Practical	half-life of		
	activities for	nuclear		
	this topic	radiation		
	include	samples.		
	demonstration			
	s of			
	conservation	Cross-		
	of mass	curricular		
		knowledge:		
	including	Links to the		
	magnesium	mathematics		
	<u>oxide</u>	curriculum		
	production in	including		
	crucibles.	exponential		
		graphs and		
		how to		
	Cross-	interpret		
	curricular	these.		
	knowledge:	triese.		
	Links to			
	Mathematics			
	and the			
	balancing of			
	equations.			
	equations.			

Year	Topic title and	Topic title and	Topic title	Topic title	Students will be	Students will
11	key concept:	key concept:	and key	and key	focussing on	have left after
			concept:	concept:	preparing for	their Summer
	Rate and Extent	Inheritance			their Summer	Examinations
	of Change –	and Variation –	Chemical	Chemistry of	Examinations	
	students	this topic	analysis –	the		
	investigate rates	focuses on	students	Atmosphere		
	of reaction in	DNA and how	discover how	– a study of		
	this topic	this is passed	chemical	the		
	including factors	on through	analysis	composition		
	that can	sexual and	techniques	of our		
	increase or	asexual	can be used	atmosphere		
	decrease this	reproduction.	to determine	and how this		
	rate. Students	Students also	the presence	has changed		
	also cover	discover how	of different	over the		
	dynamic	characteristics	gases as well	history of the		
	equilibrium and	are inherited	as soluble	Earth as well		
	Le Chatelier's	and that	substances	as the impact		
	principle and	variation in	found in	of humans on		
	how this is used	species can	chromatogra	this.		
	in industry to	lead to	ms. Students	Substantive		
	produce	evolution in a	also work on	Knowledge:		
	products such	species and	chemical	How has the		
	as ammonia.	how species that are unable	measuremen	Earth's		
	Substantive		ts such as	atmosphere		
	Knowledge:	to evolve risk	spectroscopy	changed		
	What are	becoming extinct.	and	over time		
	factors that	exunct.	identifying ions in	and how		
	affect rates of	Substantive	substances.	have		
	reaction?	Knowledge:	substances.	humans		
		What is the	Substantive	affected		
		structure of	Knowledge:	these		
	Disciplinary	DNA and how	How can	changes?		
	knowledge:	is it	scientists			
	Knowledge.	replicated?	identify			
	Practical		unknown	Disciplinary		
	activities in this	What is	substances	knowledge:		
	topic are varied	evolution and	using	Miowicage.		
	and include an	how can	chemical	Students can		
	evaluation of	organisms	analysis?	analyse data		
	how to collect	evolve over		representatio		
	gas released	time?		ns of		
	from a chemical		Disciplinary	changes to		
	reaction in the		knowledge:	<u>the</u>		
	most accurate	<u>Disciplinary</u>		<u>atmosphere</u>		
	manner.	knowledge:	<u>Students</u>	of the Earth		
	<u>Students</u>	Studente hous	create their			
	investigate how	Students have	<u>own</u>			
	concentration,	the opportunity	<u>chromatogra</u>	Cross-		
	temperature, or	to create models of the	ms and use	curricular		
	surface area	double helix	these to	knowledge:		
		GOUDIE HEIIX	<u>determine</u>			

affect rates of structure of Links to the <u>the</u> reaction. DNA. Students composition mathematics curriculum as of different use various models to substances. students show the Students can analyse Cross-curricular process of <u>also</u> graphical knowledge: representatio evolution and complete gas Links to Outdoor how a change tests to ns of the Learning and in environment Earth's determine atmosphere the production and variation results of of fertilisers do not always positive tests Topic title using dynamic lead to an for different and key equilibrium <u>organism</u> gases. concept: evolving. <u>Students</u> studying Using Separate Resources -Science can a study of Cross-Topic title and <u>evaluate</u> curricular sustainability different key concept: knowledge: and the substances environmenta Forces – the Links to the for the ions I impact of study of contact which they History products over and non-contact contain using curriculum their life time forces and how through the flame tests includina these forces can study of and minimising be measured genetic spectroscopy damaging and calculated inheritance effects. in various and how scenarios. lineages used Substantive Students also genetic Knowledge: Topic title study the motion inheritance to and key of objects and What is the determine concept: calculate the impact of heirs products velocities and Waves - the Topic title and over their accelerations of study of key concept: life cycle? objects. energy How can the transfers in Organic **Substantive** impact of the form of Chemistry -Knowledge: products be transverse the study of reduced and What are organic over time? Iongitudinal forces and how chemicals can they be waves. collected from Students calculated? crude oil and discover **Disciplinary** separated in How can the more about knowledge: fractional motion of the family of Students distillation. objects be waves known investigate Students described and as the how potable studying quantified electromagne water is separate based on the tic spectrum made and science also

and how

these are

study various

reactions of

<u>the</u>

processes

forces acting

on it?

these used in involved in hydrocarbons various treating Disciplinary and how we employment <u>sewage</u> knowledge: use them to sectors. water and There are a make ground Substantive variety of substances water. Knowledge: practical such as activities in this carboxylic What are topic including acids, esters, different Crossalcohols and types of curricular measurement of polymers. waves and knowledge: weight and what are Links to **Substantive** mass to they used Geography Knowledge: determine the for? and the value of What is crude environmenta gravitational oil and what I impact of field strength on does it products Earth. Students Disciplinary contain? investigate knowledge: Topic title acceleration and <u>Transverse</u> How can and key how the force <u>and</u> crude oil be concept: applied to an longitudinal separated? object can Electromagn waves are increase its etism – a modelled by acceleration teaching staff study of Disciplinary proportionally. magnetic knowledge: demonstrate fields and the Students can link between this test unobservable electricity Cross-curricular substances to and <u>phenomenon</u> knowledge: discover if they magnetism . Students Links to the are alkanes or participate in mathematics **Substantive** alkenes using calculating curriculum as bromine water. Knowledge: the speed of students What are a wave rearrange, permanent based on substitute and and Crossmeasuring calculate temporary curricular <u>the</u> quantities using magnets wavelength knowledge: equations and the Links to and factors that engineering frequency of affect the and the use of a water wave strength of different and a their fields? substances in standing crude oil being wave. used as fuels Disciplinary knowledge: Cross-Students are curricular given the knowledge: opportunity to Links to the

investigate

permanent

IT curriculum

and uses of and electromagne temporary tic waves in magnets transmitting including data which materials Topic title they affect and key and factors concept: that can increase the Ecology – the strength of study of living the magnetic organisms in fields. communities Students and how studying these Separate communities Science also interact and investigate affect each the motor other. effect and Students how this study generates scientific movement. techniques such as sampling and Crossdiscuss how curricular sampling can be used to knowledge: identify Links to the populations mathematics curriculum in an area. using Substantive equations Knowledge: including How do rearranging, populations substituting, interact with and each other calculating and what different factors quantities. affect communitie s? **Disciplinary** knowledge: **Practical** activities <u>include</u> sampling techniques

where students <u>estimate</u> population numbers and <u>discuss</u> factors that can affect these populations. Students also study a variety of graphical representatio ns of changes to populations over time. Crosscurricular knowledge: Links to the mathematics curriculum as students analyse graphs. Links to the Geography curriculum and the factors that affect living communities.

DO MORE: Milestone assessment end points

Disciplinary knowledge in Science is often discussed as 'Working Scientifically' which has a range of skills related to practical work, modelling, analysis, and evaluation. The end points for this knowledge are split into different categories as shown below.

However, students must also be able to complete skills such as applying knowledge, evaluating data and hypotheses, explaining key concepts, and defining key terms. Below are end points for each of the year groups and topics based on these core skills.

Year 7

Basic	Clear	Detailed
-------	-------	----------

Commented [MS1]: Which year groups do the end points for disciplinary knowledge (Do More) refer to?

Commented [MS2R1]: @Ms C Wassell

Commented [3R1]: They apply to all 5 year groups as they contain progression within them

Commented [4R1]: OK great. These would need to be divided into year groups as other subjects are done so it is overt which skills are being taught to which year groups and how they should progress through each year. Does that make sense?

Commented [5R1]: Can I see an example from History so I can see how this works for you?

Commented [6R1]: I will send you some examples from different subjects to support.

Safety and Risk Safety and Risk **Safety and Risk** Recognise risks when prompted Act on suggestions to minimise risk Independently recognise risks **Apparatus Apparatus Apparatus** Identify basic apparatus used in Choose correct equipment from a Independently choose the correct investigations selected list with prompts equipment Method Method Method Suggest ways to investigate a Hypothesise a result based on an Suggest ways to investigate a question investigation question **Variables Variables Variables** Identify variables that are difficult to Name the three variables Name a control variable from a list **Graphs** of variables control Label axes on a basic line or bar **Graphs Graphs** graph Label units on axes on basic line or Plot points on basic line or bar **Conclusion and Evaluation** bar graphs graphs Identify straightforward patterns in **Conclusion and Evaluation Conclusion and Evaluation** Suggest ways to improve a method data Make simple conclusions Scientific method Identify anomalies **Scientific method** Give examples of how scientific Identify methods that can be used Scientific method methods and theories have changed to tackle problems caused by Describe specified examples of the human impacts on the environment technological applications of science over time Recognise/draw/interpret diagrams Translate data to a representation Describe methods that can be used with a model to tackle problems caused by human impacts on the environment

Year 8

Basic	Clear	Detailed
Safety and Risk	Safety and Risk	Safety and Risk
Act on suggestions to minimise risk	Independently recognise risks	Describe risks during specific
<u>Apparatus</u>	<u>Apparatus</u>	practical work
Choose correct equipment from a	Independently choose the correct	Identify hazards associated with
selected list with prompts	equipment	risks
Method	Method	<u>Apparatus</u>
Hypothesise a result based on an	Suggest ways to investigate a	Draw the set up of apparatus in
investigation	question	specific investigations
Variables	<u>Variables</u>	Method
Name a control variable from a list	Identify control variables	Describe a basic method including
of variables	independently	measurements that must be taken
<u>Graphs</u>	<u>Graphs</u>	Describe a basic method including
Label units on axes on basic line or	Plot points on basic line or bar	ranges and intervals
bar graphs	graphs	<u>Variables</u>
Conclusion and Evaluation	Conclusion and Evaluation	Recognise which variables to
Make simple conclusions	Suggest ways to improve a method	control, measure, and change
Scientific method	Identify anomalies	<u>Graphs</u>
Identify methods that can be used	Scientific method	Draw a line graph with support
to tackle problems caused by	Describe specified examples of the	Conclusion and Evaluation
human impacts on the environment	technological applications of science	Describe trends in graphs
		Describe trends in data

Translate data to a representation	Describe methods that can be used	Use data in conclusions
with a model	to tackle problems caused by	Scientific method
	human impacts on the environment	Explain why new data from
		experiments or observations led to
		changes in models or theories
		Use models in explanations or
		match features of a model to the
		data from experiments or
		observations that the model
		describes or explains
		Explain specified examples of the
		technological applications of science

		Explain specified examples of the technological applications of science
Year 9	La	In the second
Safety and Risk	Clear Safety and Risk	Detailed Safety and Risk
Independently recognise risks Apparatus Independently choose the correct equipment Method Suggest ways to investigate a question Variables Identify variables that are difficult to control	Describe risks during specific practical work Identify hazards associated with risks Apparatus Draw the set up of apparatus in specific investigations Method Describe a basic method including measurements that must be taken	Independently recognise controls for specific risks and hazards Apparatus Describe how apparatus can be set up for practical investigations Method Describe a method including some of the variables Explain why it is important to
Graphs Plot points on basic line or bar graphs Conclusion and Evaluation Suggest ways to improve a method Identify anomalies Scientific method Describe specified examples of the	Describe a basic method including ranges and intervals Variables Recognise which variables to control, measure, and change Graphs Draw a line graph with support Conclusion and Evaluation	control variables to minimise errors Graphs Draw a line graph independently Identify anomalies on a line graph Conclusion and Evaluation Describe anomalies in terms of methodology Suggest practical improvements to
technological applications of science Describe methods that can be used to tackle problems caused by human impacts on the environment	Describe trends in graphs Describe trends in data Use data in conclusions Scientific method Explain why new data from experiments or observations led to changes in models or theories Use models in explanations or match features of a model to the data from experiments or	methodology and data collection Scientific method Decide whether or not given data supports a particular theory Give examples of ways in which a model can be tested by observation or experiment Make predictions or calculate quantities based on the model or show its limitations

observations that the model	
describes or explains	
Explain specified examples of the	
technological applications of science	

Basic	Clear	Detailed
Safety and Risk	Safety and Risk	Safety and Risk
Describe risks during specific	Independently recognise controls	Explain risks and how these can be
practical work	for specific risks and hazards	controlled
Identify hazards associated with	<u>Apparatus</u>	<u>Apparatus</u>
risks	Describe measurements taken by	Describe measurements taken by
<u>Apparatus</u>	different pieces of apparatus	different pieces of apparatus
Draw the set up of apparatus in	Method	Method
specific investigations	Describe a method including some	Describe a full method including the
Method	of the variables	three variables
Describe a basic method including	<u>Variables</u>	Explain choices such as intervals and
measurements that must be taken	Explain the impact of not controlling	ranges of different variables
Describe a basic method including	specific variables	<u>Variables</u>
ranges and intervals	<u>Graphs</u>	Explain the impact of not controlling
<u>Variables</u>	Draw a line graph independently	specific variables
Recognise which variables to	Identify anomalies on a line graph	<u>Graphs</u>
control, measure, and change	Conclusion and Evaluation	Draw curves of best fit
<u>Graphs</u>	Describe anomalies in terms of	Conclusion and Evaluation
Draw a line graph with support	methodology	Identify quantitative relationships
Conclusion and Evaluation	Suggest practical improvements to	such as direct proportionality
Describe trends in graphs	methodology and data collection	Critically interpret data
Describe trends in data	Scientific method	Scientific method
Use data in conclusions	Decide whether or not given data	Evaluate methods that can be used
Scientific method	supports a particular theory	to tackle problems caused by
Explain why new data from	Give examples of ways in which a	human impacts on the environment
experiments or observations led to	model can be tested by observation	Suggest why the perception of risk
changes in models or theories	or experiment	is very often different from the
Use models in explanations or	Make predictions or calculate	measured risk
match features of a model to the	quantities based on the model or	
data from experiments or	show its limitations	

observations that the model
describes or explains
Explain specified examples of the
technological applications of science

Basic	Clear	Detailed
Safety and Risk	Safety and Risk	Safety and Risk
Independently recognise controls	Explain risks and how these can be	Create a risk assessment using
for specific risks and hazards	controlled	suggested controls
<u>Apparatus</u>	<u>Apparatus</u>	Create a risk assessment
Describe how apparatus can be set	Explain how precise measurements	independently
up for practical investigations	can be taken using different pieces	<u>Apparatus</u>
Describe measurements taken by	of apparatus	Independently explain resolution of
different pieces of apparatus	Method	various apparatus
Method	Describe a full method including the	Method
Describe a method including some	three variables	Explain how your method will
of the variables	Explain choices such as intervals and	minimise errors
<u>Variables</u>	ranges of different variables	Evaluate methods and suggest
Explain the impact of not controlling	<u>Variables</u>	improvements that will affect
specific variables	Explain the impact of not controlling	accuracy
<u>Graphs</u>	specific variables	<u>Variables</u>
Draw a line graph independently	<u>Graphs</u>	Explain independent and dependent
Identify anomalies on a line graph	Draw curves of best fit	variables in terms of ranges and
Conclusion and Evaluation	Conclusion and Evaluation	intervals
Describe anomalies in terms of	Identify quantitative relationships	<u>Graphs</u>
methodology	such as direct proportionality	Read data from line or bar graphs
Suggest practical improvements to	Critically interpret data	Conclusion and Evaluation
methodology and data collection	Scientific method	Evaluate conflicting evidence
Scientific method	Evaluate methods that can be used	Justify improvements for
Decide whether or not given data	to tackle problems caused by	methodology
supports a particular theory	human impacts on the environment	Suggest how to improve reliability
Give examples of ways in which a	Suggest why the perception of risk	of data
model can be tested by observation	is very often different from the	Consider limitations in methodology
or experiment	measured risk	and data collection
Make predictions or calculate		Scientific method
quantities based on the model or		Explain that the process of peer

review helps to detect false claims

show its limitations

and to establish a consensus about
which claims should be regarded as
valid
Explain that reports of scientific
developments in the popular media
are not subjected to peer review
and may be oversimplified,
inaccurate, or biased

GO FURTHER: Skills Builder

We are also explicitly embedding transferable 'Skills Builder' skills such as problem solving, aiming high and teamwork to prepare our students for higher education and employability skills for the future. This year in History we will focus on **TEAMWORK** including group decision making and recognising the value of others. **PROBLEM SOLVING** by exploring complex problems by analysing cause and effect, and understanding through research. Furthermore, we want our students to **AIM HIGH** by setting goals, prioritising tasks and involving others.

How does our Curriculum cater for students with SEND?

Sandhill View is an inclusive academy where every child is valued and respected. We are committed to the inclusion, progress and independence of all our students, including those with SEN. We work to support our students to make progress in their learning, their emotional and social development and their independence. We actively work to support the learning and needs of all members of our community. A child or young person has SEN if they have a learning difficulty or disability which calls for special educational provision to be made that is additional to or different from that made generally for other children or young people of the same age. (CoP 2015, p16)

Teachers are responsible for the progress of ALL students in their class and high-quality teaching is carefully planned; this is the first step in supporting students who may have SEND. All students are challenged to do their very best and all students at the Academy are expected to make at least good progress.

Specific approaches which are used within Science include:

- · Seating to allow inclusion
- Scaffolding to stretch and support in all lessons
- Resources are accessible yet challenging
- Displays and visual learning tools are used where necessary
- Where appropriate, support from additional adults is planned to scaffold students learning
- Group work and discussion
- Clear teacher/student communication
- Feedback that allows students to make progress, whether written or verbal
- Independent study/homework.
- Intervention when required

How does our curriculum cater for disadvantaged students and those from minority groups?

As a school serving an area with high levels of deprivation, we work tirelessly to raise the attainment for all students and to close any gaps that exist due to social contexts. The deliberate allocation of funding and

resources has ensured that attainment gaps are closing in our drive to ensure that all pupils are equally successful when they leave the Academy. More specifically within the teaching of Science, we;

- work to identify barriers, interests and what might help each pupil make the next steps in learning.
- provide targeted support for under-performing pupils during lesson time, such as targeted questioning, live marking and seating
- ensure there are opportunities for students to make use of resources and gain homework support outside of lesson time through the use of Teams
- provide students with revision materials to reduce financial burden on families

How do we make sure that our curriculum is implemented effectively?

- The Science curriculum leader is responsible for the design and implementation of the curriculum
 including quality assurance of lesson resources, schemes of learning, and assessments, as well as
 the monitoring and evaluation of this implementation to measure the impact.
- The subject leader's monitoring is validated by senior leaders.
- Staff have regular access to professional development/training to ensure that curriculum requirements are met and subject knowledge developed.
- Effective assessment informs staff about areas in which interventions are required. These
 interventions are delivered during curriculum time to enhance pupils' capacity to access the full
 curriculum.
- Curriculum resources are selected carefully and reviewed regularly.
- Assessments are designed thoughtfully to assess student progress, long term knowledge retrieval
 and also to shape future learning.
- · Assessments are checked for reliability within departments and across the Trust.

There are several Science staff who mark for exam boards and provide vital CPD to the rest of the department to ensure reliability of data.

Gap analysis spreadsheets are used to identify areas of development for students at KS4 to identify areas of weakness. Enhanced results analysis is also used to identify departmental priorities for development to ensure students are making the highest progress.

How do we make sure our curriculum is having the desired impact?

- Examination results analysis and evaluation.
- Half-termly assessments based upon substantive and disciplinary knowledge covered during this time.
- Lesson observations.
- Learning walks for KS3 and KS4 based upon departmental priorities.
- Work sample for each year group.
- Regular feedback from teaching staff during department meetings.
- Regular feedback from Middle Leaders during curriculum meetings.
- · Pupil Surveys.
- Parental feedback.
- · Staff feedback through staff voice surveys.